David Carney
Amgen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David Carney.
Nature | 2007
Jill Milne; Philip D. Lambert; Simon Schenk; David Carney; Jesse J. Smith; David J. Gagne; Lei Jin; Olivier Boss; Robert B. Perni; Chi B. Vu; Jean E. Bemis; Roger Xie; Jeremy S. Disch; Pui Yee Ng; Joseph J. Nunes; Amy V. Lynch; Hongying Yang; Heidi Galonek; Kristine Israelian; Wendy Choy; Andre Iffland; Siva Lavu; Oliver Medvedik; David A. Sinclair; Jerrold M. Olefsky; Michael R. Jirousek; Peter J. Elliott; Christoph H. Westphal
Calorie restriction extends lifespan and produces a metabolic profile desirable for treating diseases of ageing such as type 2 diabetes. SIRT1, an NAD+-dependent deacetylase, is a principal modulator of pathways downstream of calorie restriction that produce beneficial effects on glucose homeostasis and insulin sensitivity. Resveratrol, a polyphenolic SIRT1 activator, mimics the anti-ageing effects of calorie restriction in lower organisms and in mice fed a high-fat diet ameliorates insulin resistance, increases mitochondrial content, and prolongs survival. Here we describe the identification and characterization of small molecule activators of SIRT1 that are structurally unrelated to, and 1,000-fold more potent than, resveratrol. These compounds bind to the SIRT1 enzyme–peptide substrate complex at an allosteric site amino-terminal to the catalytic domain and lower the Michaelis constant for acetylated substrates. In diet-induced obese and genetically obese mice, these compounds improve insulin sensitivity, lower plasma glucose, and increase mitochondrial capacity. In Zucker fa/fa rats, hyperinsulinaemic-euglycaemic clamp studies demonstrate that SIRT1 activators improve whole-body glucose homeostasis and insulin sensitivity in adipose tissue, skeletal muscle and liver. Thus, SIRT1 activation is a promising new therapeutic approach for treating diseases of ageing such as type 2 diabetes.
BMC Systems Biology | 2009
Jesse J. Smith; Renée Deehan Kenney; David J. Gagne; Brian P. Frushour; William M. Ladd; Heidi Galonek; Kristine Israelian; Jeffrey Song; Giedre Razvadauskaite; Amy V. Lynch; David Carney; Robin J Johnson; Siva Lavu; Andre Iffland; Peter J. Elliott; Philip D. Lambert; Keith O. Elliston; Michael R. Jirousek; Jill Milne; Olivier Boss
BackgroundCalorie restriction (CR) produces a number of health benefits and ameliorates diseases of aging such as type 2 diabetes. The components of the pathways downstream of CR may provide intervention points for developing therapeutics for treating diseases of aging. The NAD+-dependent protein deacetylase SIRT1 has been implicated as one of the key downstream regulators of CR in yeast, rodents, and humans. Small molecule activators of SIRT1 have been identified that exhibit efficacy in animal models of diseases typically associated with aging including type 2 diabetes. To identify molecular processes induced in the liver of mice treated with two structurally distinct SIRT1 activators, SIRT501 (formulated resveratrol) and SRT1720, for three days, we utilized a systems biology approach and applied Causal Network Modeling (CNM) on gene expression data to elucidate downstream effects of SIRT1 activation.ResultsHere we demonstrate that SIRT1 activators recapitulate many of the molecular events downstream of CR in vivo, such as enhancing mitochondrial biogenesis, improving metabolic signaling pathways, and blunting pro-inflammatory pathways in mice fed a high fat, high calorie diet.ConclusionCNM of gene expression data from mice treated with SRT501 or SRT1720 in combination with supporting in vitro and in vivo data demonstrates that SRT501 and SRT1720 produce a signaling profile that mirrors CR, improves glucose and insulin homeostasis, and acts via SIRT1 activation in vivo. Taken together these results are encouraging regarding the use of small molecule activators of SIRT1 for therapeutic intervention into type 2 diabetes, a strategy which is currently being investigated in multiple clinical trials.
Journal of Biological Chemistry | 2010
Han Dai; Lauren Kustigian; David Carney; April Case; Thomas Considine; Basil P. Hubbard; Robert B. Perni; Thomas V. Riera; Bruce Szczepankiewicz; George P. Vlasuk; Ross L. Stein
SIRT1 is a protein deacetylase that has emerged as a therapeutic target for the development of activators to treat diseases of aging. SIRT1-activating compounds (STACs) have been developed that produce biological effects consistent with direct SIRT1 activation. At the molecular level, the mechanism by which STACs activate SIRT1 remains elusive. In the studies reported herein, the mechanism of SIRT1 activation is examined using representative compounds chosen from a collection of STACs. These studies reveal that activation of SIRT1 by STACs is strongly dependent on structural features of the peptide substrate. Significantly, and in contrast to studies reporting that peptides must bear a fluorophore for their deacetylation to be accelerated, we find that some STACs can accelerate the SIRT1-catalyzed deacetylation of specific unlabeled peptides composed only of natural amino acids. These results, together with others of this study, are at odds with a recent claim that complex formation between STACs and fluorophore-labeled peptides plays a role in the activation of SIRT1 (Pacholec, M., Chrunyk, B., Cunningham, D., Flynn, D., Griffith, D., Griffor, M., Loulakis, P., Pabst, B., Qiu, X., Stockman, B., Thanabal, V., Varghese, A., Ward, J., Withka, J., and Ahn, K. (2010) J. Biol. Chem. 285, 8340–8351). Rather, the data suggest that STACs interact directly with SIRT1 and activate SIRT1-catalyzed deacetylation through an allosteric mechanism.
Protein Science | 2009
Lei Jin; Heidi Galonek; Kristine Israelian; Wendy Choy; Michael Morrison; Yu Xia; Xiaohong Wang; Yihua Xu; Yuecheng Yang; Jesse J. Smith; Ethan Hoffmann; David Carney; Robert B. Perni; Michael R. Jirousek; Jean E. Bemis; Jill Milne; David A. Sinclair; Christoph H. Westphal
SIRT3 is a key mitochondrial protein deacetylase proposed to play key roles in regulating mitochondrial metabolism but there has been considerable debate about its actual size, the sequences required for activity, and its subcellular localization. A previously cloned mouse SIRT3 has high sequence similarity with the C‐terminus of human SIRT3 but lacks an N‐terminal mitochondrial targeting sequence and has no detectable deacetylation activity in vitro. Using 5′ rapid amplification of cDNA ends, we cloned the entire sequence of mouse SIRT3, as well as rat and rabbit SIRT3. Importantly, we find that full‐length SIRT3 protein localizes exclusively to the mitochondria, in contrast to reports of SIRT3 localization to the nucleus. We demonstrate that SIRT3 has no deacetylation activity in vitro unless the protein is truncated, consistent with human SIRT3. In addition, we determined the inhibition constants and mechanism of action for nicotinamide and a small molecule SIRT3 inhibitor against active mouse SIRT3 and show that the mechanisms are different for the two compounds with respect to peptide substrate and NAD+. Thus, identification and characterization of the actual SIRT3 sequence should help resolve the debate about the nature of mouse SIRT3 and identify new mechanisms to modulate enzymatic activity.
Journal of Medicinal Chemistry | 2009
Chi B. Vu; Jean E. Bemis; Jeremy S. Disch; Pui Yee Ng; Joseph J. Nunes; Jill Milne; David Carney; Amy V. Lynch; Jesse J. Smith; Siva Lavu; Philip D. Lambert; David J. Gagne; Michael R. Jirousek; Simon Schenk; Jerrold M. Olefsky; Robert B. Perni
A series of imidazo[1,2-b]thiazole derivatives is shown to activate the NAD(+)-dependent deacetylase SIRT1, a potential new therapeutic target to treat various metabolic disorders. This series of compounds was derived from a high throughput screening hit bearing an oxazolopyridine core. Water-solubilizing groups could be installed conveniently at either the C-2 or C-3 position of the imidazo[1,2-b]thiazole ring. The SIRT1 enzyme activity could be adjusted by modifying the amide portion of these imidazo[1,2-b]thiazole derivatives. The most potent analogue within this series, namely, compound 29, has demonstrated oral antidiabetic activity in the ob/ob mouse model, the diet-induced obesity (DIO) mouse model, and the Zucker fa/fa rat model.
Bioorganic & Medicinal Chemistry Letters | 2009
Jean E. Bemis; Chi B. Vu; Roger Xie; Joseph J. Nunes; Pui Yee Ng; Jeremy S. Disch; Jill Milne; David Carney; Amy V. Lynch; Lei Jin; Jesse J. Smith; Siva Lavu; Andre Iffland; Michael R. Jirousek; Robert B. Perni
SIRT1 is an NAD(+)-dependent protein deacetylase that appears to produce beneficial effects on metabolic parameters such as glucose and insulin homeostasis. Activation of SIRT1 by resveratrol (1) has been shown to modulate insulin resistance, increase mitochondrial content and prolong survival in lower organisms and in mice on a high fat diet. Herein, we describe the identification and SAR of a series of oxazolo[4,5-b]pyridines as novel small molecule activators of SIRT1 which are structurally unrelated to and more potent than resveratrol.
Bioorganic & Medicinal Chemistry Letters | 2009
Chi B. Vu; Jill Milne; David Carney; Jeffrey Song; Wendy Choy; Philip D. Lambert; David J. Gagne; Michael Hirsch; Angela Cote; Meghan Davis; Elden Lainez; Nekeya Meade; Karl D. Normington; Michael R. Jirousek; Robert B. Perni
A series of triamide derivatives bearing a benzothiazole core is shown to be potent microsomal triglyceride transfer protein (MTP) inhibitors. In order to minimize liver toxicity, these compounds have been optimized to have activity only in the enterocytes and have limited systemic bioavailability. Upon oral administration, selected analogs within this series have been further demonstrated to reduce food intake along with body weight and thereby improve glucose homeostasis and insulin sensitivity in a 28-day mice diet-induced obesity (DIO) model.
Bioorganic & Medicinal Chemistry Letters | 2011
John L. Buchanan; John Newcomb; David Carney; Stuart C. Chaffee; Lilly Chai; Rod Cupples; Linda F. Epstein; Paul Gallant; Yan Gu; Jean-Christophe Harmange; Kathy Hodge; Brett E. Houk; Xin Huang; Janan Jona; Smriti Joseph; H. Toni Jun; Rakesh Kumar; Chun Li; John Lu; Tom Menges; Michael Morrison; Perry M. Novak; Simon van der Plas; Robert Radinsky; Paul Rose; Satin Sawant; Ji-Rong Sun; Sekhar Surapaneni; Susan M. Turci; Keyang Xu
The insulin-like growth factor-1 receptor (IGF-1R) plays an important role in the regulation of cell growth and differentiation, and in protection from apoptosis. IGF-1R has been shown to be an appealing target for the treatment of human cancer. Herein, we report the synthesis, structure-activity relationships (SAR), X-ray cocrystal structure and in vivo tumor study results for a series of 2,4-bis-arylamino-1,3-pyrimidines.
Journal of Medicinal Chemistry | 2016
Chi B. Vu; Jean E. Bemis; Ericka Benson; Pradeep Bista; David Carney; Richard Fahrner; Diana Lee; Feng Liu; Pallavi Lonkar; Jill Milne; Andrew J. Nichols; Dominic Picarella; Adam Shoelson; Jesse J. Smith; Amal Ting; Allison Wensley; Maisy Yeager; Michael Zimmer; Michael R. Jirousek
This report describes the synthesis and preliminary biological characterization of novel fatty acid niacin conjugates and fatty acid salicylate conjugates. These molecular entities were created by covalently linking two bioactive molecules, either niacin or salicylic acid, to an omega-3 fatty acid. This methodology allows the simultaneous intracellular delivery of two bioactives in order to elicit a pharmacological response that could not be replicated by administering the bioactives individually or in combination. The fatty acid niacin conjugate 5 has been shown to be an inhibitor of the sterol regulatory element binding protein (SREBP), a key regulator of cholesterol metabolism proteins such as PCSK9, HMG-CoA reductase, ATP citrate lyase, and NPC1L1. On the other hand, the fatty acid salicylate conjugate 11 has been shown to have a unique anti-inflammatory profile based on its ability to modulate the NF-κB pathway through the intracellular release of the two bioactives.
Bioorganic & Medicinal Chemistry Letters | 2009
Juan Manuel Betancort; David T. Winn; Ruzhang Liu; Quansheng Xu; Junjuan Liu; Wensheng Liao; Shuhui Chen; David Carney; Denise Hanway; James Schmeits; Xinqiang Li; Eric M. Gordon; David Alan Campbell
The synthesis and biochemical evaluation of novel cyanothiazolidine inhibitors of dipeptidyl peptidase 4 (DPP4) is described. Their main structural feature is a constrained bicyclic core that prevents the intramolecular formation of inactive cyclic species. The inhibitors show good to moderate biochemical potency against DPP4 and display distinct selectivity profiles towards DPP7, DPP8 and DPP9 depending on their substitution.