Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David M. Small is active.

Publication


Featured researches published by David M. Small.


Nephrology | 2012

Oxidative stress, anti‐oxidant therapies and chronic kidney disease

David M. Small; Jeff S. Coombes; Nigel C. Bennett; David W. Johnson; Glenda C. Gobe

Chronic kidney disease (CKD) is a common and serious problem that adversely affects human health, limits longevity and increases costs to health‐care systems worldwide. Its increasing incidence cannot be fully explained by traditional risk factors. Oxidative stress is prevalent in CKD patients and is considered to be an important pathogenic mechanism. Oxidative stress develops from an imbalance between free radical production often increased through dysfunctional mitochondria formed with increasing age, type 2 diabetes mellitus, inflammation, and reduced anti‐oxidant defences. Perturbations in cellular oxidant handling influence downstream cellular signalling and, in the kidney, promote renal cell apoptosis and senescence, decreased regenerative ability of cells, and fibrosis. These factors have a stochastic deleterious effect on kidney function. The majority of studies investigating anti‐oxidant treatments in CKD patients show a reduction in oxidative stress and many show improved renal function. Despite heterogeneity in the oxidative stress levels in the CKD population, there has been little effort to measure patient oxidative stress levels before the use of any anti‐oxidants therapies to optimize outcome. This review describes the development of oxidative stress, how it can be measured, the involvement of mitochondrial dysfunction and the molecular pathways that are altered, the role of oxidative stress in CKD pathogenesis and an update on the amelioration of CKD using anti‐oxidant therapies.


Nephron Experimental Nephrology | 2012

Oxidative stress and cell senescence combine to cause maximal renal tubular epithelial cell dysfunction and loss in an in vitro model of kidney disease.

David M. Small; Nigel C. Bennett; Sandrine Roy; Brian Gabrielli; David W. Johnson; Glenda C. Gobe

Background: The incidence and cost of chronic kidney disease (CKD) are increasing. Renal tubular epithelial cell dysfunction and attrition, involving increased apoptosis and cell senescence, are central to the pathogenesis of CKD. The aim here was to use an in vitro model to investigate the separate and cumulative effects of oxidative stress, mitochondrial dysfunction and cell senescence in promoting loss of renal mass. Methods: Human kidney tubular epithelial cells (HK2) were treated with moderate hydrogen peroxide (H2O2) for oxidative stress, with or without cell cycle inhibition (apigenin, API) for cell senescence. Adenosine triphosphate (ATP) and oxidative stress were measured by ATP assay, lipid peroxidation, total antioxidant capacity, mitochondrial function with confocal microscopy, MitoTracker Red CMXRos and live cell imaging with JC-1. In parallel, cell death and injury (i.e. apoptosis and Bax/Bcl-XL expression, lactate dehydrogenase), cell senescence (SA-β-galactosidase) and renal regenerative ability (cell proliferation), and their modulation with the anti-oxidant N-acetyl-cysteine (NAC) were investigated. Results: H2O2 and API, separately, increased oxidative stress and mitochondrial dysfunction, apoptosis and cell senescence. Although API caused cell senescence, it also induced oxidative stress at levels similar to H2O2 treatment alone, indicating that senescence and oxidative stress may be intrinsically linked. When H2O2 and API were delivered concurrently, their detrimental effects on renal cell loss were compounded. The antioxidant NAC attenuated apoptosis and senescence, and restored regenerative potential to the kidney. Conclusion: Oxidative stress and cell senescence both cause mitochondrial destabilization and cell loss and contribute to the development of the cellular characteristics of CKD.


Journal of Biomedical Optics | 2014

Multiphoton fluorescence microscopy of the live kidney in health and disease

David M. Small; Washington Y. Sanchez; Sandrine Roy; Michael J. Hickey; Glenda C. Gobe

Abstract. The structural and functional heterogeneity of the kidney ensures a diversity of response in health and disease. Multiphoton microscopy has improved our understanding of kidney physiology and pathophysiology by enabling the visualization of the living kidney in comparison with the static view of previous technologies. The use of multiphoton microscopy with rodent models in conjunction with endogenous fluorescence and exogenous infused dyes permits the measurement of renal processes, such as glomerular permeability, juxtaglomerular apparatus function, tubulointerstitial function, tubulovascular interactions, vascular flow rate, and the intrarenal renin-angiotensin-aldosterone system. Subcellular processes, including mitochondrial dynamics, reactive oxygen species production, cytosolic ion concentrations, and death processes apoptosis and necrosis, can also be measured by multiphoton microscopy. This has allowed valuable insight into the pathophysiology of diabetic nephropathy, renal ischemia-reperfusion injury, hypertensive nephropathy, as well as inflammatory responses of the kidney. The current review presents an overview of multiphoton microscopy with a focus on techniques for imaging the kidney and gives examples of instances where multiphoton microscopy has been utilized to study renal pathophysiology in the living kidney. With continued advancements in the field of biological optics and increased adoption in experimental nephrology, multiphoton microscopy will undoubtedly continue to create new paradigms in kidney disease.


Nephrology | 2016

Indoxyl sulphate and kidney disease: causes, consequences and interventions

Robert J. Ellis; David M. Small; David A. Vesey; David W. Johnson; Ross S. Francis; Luis Vitetta; Glenda C. Gobe; Christudas Morais

In the last decade, chronic kidney disease (CKD), defined as reduced renal function (glomerular filtration rate (GFR) < 60 mL/min per 1.73 m2) and/or evidence of kidney damage (typically manifested as albuminuria) for at least 3 months, has become one of the fastest‐growing public health concerns worldwide. CKD is characterized by reduced clearance and increased serum accumulation of metabolic waste products (uremic retention solutes). At least 152 uremic retention solutes have been reported. This review focuses on indoxyl sulphate (IS), a protein‐bound, tryptophan‐derived metabolite that is generated by intestinal micro‐organisms (microbiota). Animal studies have demonstrated an association between IS accumulation and increased fibrosis, and oxidative stress. This has been mirrored by in vitro studies, many of which report cytotoxic effects in kidney proximal tubular cells following IS exposure. Clinical studies have associated IS accumulation with deleterious effects, such as kidney functional decline and adverse cardiovascular events, although causality has not been conclusively established. The aims of this review are to: (i) establish factors associated with increased serum accumulation of IS; (ii) report effects of IS accumulation in clinical studies; (iii) critique the reported effects of IS in the kidney, when administered both in vivo and in vitro; and (iv) summarize both established and hypothetical therapeutic options for reducing serum IS or antagonizing its reported downstream effects in the kidney.


American Journal of Physiology-renal Physiology | 2014

Oxidative stress-induced alterations in PPAR-γ and associated mitochondrial destabilization contribute to kidney cell apoptosis

David M. Small; Christudas Morais; Jeff S. Coombes; Nigel C. Bennett; David W. Johnson; Glenda C. Gobe

The mechanism(s) underlying renoprotection by peroxisome proliferator-activated receptor (PPAR)-γ agonists in diabetic and nondiabetic kidney disease are not well understood. Mitochondrial dysfunction and oxidative stress contribute to kidney disease. PPAR-γ upregulates proteins required for mitochondrial biogenesis. Our aim was to determine whether PPAR-γ has a role in protecting the kidney proximal tubular epithelium (PTE) against mitochondrial destabilisation and oxidative stress. HK-2 PTE cells were subjected to oxidative stress (0.2-1.0 mM H₂O₂) for 2 and 18 h and compared with untreated cells for apoptosis, mitosis (morphology/biomarkers), cell viability (MTT), superoxide (dihydroethidium), mitochondrial function (MitoTracker red and JC-1), ATP (luminescence), and mitochondrial ultrastructure. PPAR-γ, phospho-PPAR-γ, PPAR-γ coactivator (PGC)-1α, Parkin (Park2), p62, and light chain (LC)3β were investigated using Western blots. PPAR-γ was modulated using the agonists rosiglitazone, pioglitazone, and troglitazone. Mitochondrial destabilization increased with H₂O₂concentration, ATP decreased (2 and 18 h; P < 0.05), Mitotracker red and JC-1 fluorescence indicated loss of mitochondrial membrane potential, and superoxide increased (18 h, P < 0.05). Electron microscopy indicated sparse mitochondria, with disrupted cristae. Mitophagy was evident at 2 h (Park2 and LC3β increased; p62 decreased). Impaired mitophagy was indicated by p62 accumulation at 18 h (P < 0.05). PPAR-γ expression decreased, phospho-PPAR-γ increased, and PGC-1α decreased (2 h), indicating aberrant PPAR-γ activation and reduced mitochondrial biogenesis. Cell viability decreased (2 and 18 h, P < 0.05). PPAR-γ agonists promoted further apoptosis. In summary, oxidative stress promoted mitochondrial destabilisation in kidney PTE, in association with increased PPAR-γ phosphorylation. PPAR-γ agonists failed to protect PTE. Despite positive effects in other tissues, PPAR-γ activation appears to be detrimental to kidney PTE health when oxidative stress induces damage.


Nature Communications | 2016

Simultaneous optical and electrical in vivo analysis of the enteric nervous system

Nikolai Rakhilin; Bradley B. Barth; Jiahn Choi; Nini L. Muñoz; Subhash Kulkarni; Jason S. Jones; David M. Small; Yu Ting Cheng; Yingqiu Cao; Colleen Lavinka; Edwin C. Kan; Xinzhong Dong; Michael G. Spencer; Pankaj J. Pasricha; Nozomi Nishimura; Xiling Shen

The enteric nervous system (ENS) is a major division of the nervous system and vital to the gastrointestinal (GI) tract and its communication with the rest of the body. Unlike the brain and spinal cord, relatively little is known about the ENS in part because of the inability to directly monitor its activity in live animals. Here, we integrate a transparent graphene sensor with a customized abdominal window for simultaneous optical and electrical recording of the ENS in vivo. The implanted device captures ENS responses to neurotransmitters, drugs and optogenetic manipulation in real time.


Expert Opinion on Drug Metabolism & Toxicology | 2012

Cytochrome c: potential as a noninvasive biomarker of drug-induced acute kidney injury

David M. Small; Glenda C. Gobe

Introduction: Acute kidney injury (AKI) in critically ill patients is closely associated with increased morbidity and mortality, yet there remains continued reliance on increased serum creatinine and blood urea nitrogen to diagnose AKI. These biomarkers increase only after significant renal structural damage has occurred. Recent research efforts have focused on discovery and validation of novel serum and urine biomarkers to detect AKI prior to extensive structural damage. Cytochrome c is best known as an indicator of cell death burden in any organ or tissue. It is released during mitochondrial damage that is associated with processing of apoptosis, cell lysis during necrosis and even reversible mitochondrial and cell injury. Areas covered: This article reviews the current literature on the potential for cytochrome c as an early biomarker of AKI. The article is based on PubMed searches, using the terms ‘acute kidney injury,’ ‘renal failure,’ ‘biomarker,’ ‘toxicity’ and ‘cytochrome c’, with a focus on experimental and clinical data. Expert opinion: Cytochrome c, as a biomarker, has the potential to improve outcome for AKI patients. Its release indicates mitochondrial damage, one of the earliest changes in cell injury and death. New mitochondrial-targeted therapeutics may be designed around this molecule. Its disadvantages include only transient increase at expression levels that are easily measurable and nonspecificity for kidney injury. The appropriate and optimal utilization of cytochrome c as a biomarker for AKI will be realized only after its complete characterization in experimental and clinical arenas.


American Journal of Physiology-renal Physiology | 2014

Gender differences in adenine-induced chronic kidney disease and cardiovascular complications in rats

Vishal Diwan; David M. Small; Kate Kauter; Glenda C. Gobe; Lindsay Brown

Gender contributes to differences in incidence and progression of chronic kidney disease (CKD) and associated cardiovascular disease. To induce kidney damage in male and female Wistar rats (n = 12/group), a 0.25% adenine diet for 16 wk was used. Kidney function (blood urea nitrogen, plasma creatinine, proteinuria) and structure (glomerular damage, tubulointerstitial atrophy, fibrosis, inflammation); cardiovascular function (blood pressure, ventricular stiffness, vascular responses, echocardiography) and structure (cardiac fibrosis); plasma testosterone and estrogen concentrations; and protein expression for oxidative stress [heme oxygenase-1, inflammation (TNF-α), fibrosis (transforming growth factor-β), ERK1/2, and estrogen receptor-α (ER-α)] were compared in males and females. Adenine-fed females had less decline in kidney function than adenine-fed males, although kidney atrophy, inflammation, and fibrosis were similar. Plasma estrogen concentrations increased and plasma testosterone concentrations decreased in adenine-fed males, with smaller changes in females. CKD-associated molecular changes in kidneys were more pronounced in males than females except for expression of ER-α in the kidney, which was completely suppressed in adenine-fed males but unchanged in adenine-fed females. Both genders showed increased blood pressure, ventricular stiffness, and cardiac fibrosis with the adenine diet. Cardiovascular changes with adenine were similar in males and females, except males developed concentric, and females eccentric cardiac hypertrophy. In hearts from adenine-fed male and female rats, expression of ER-α and activation of the ERK1/2 pathway were increased, in part explaining changes in cardiac hypertrophy. In summary, adenine-induced kidney damage may be increased in males due to the suppression of ER-α.


Redox Report | 2015

Oxidative stress contributes to muscle atrophy in chronic kidney disease patients

Kassia S. Beetham; Erin J. Howden; David M. Small; David Briskey; Megan Rossi; Nicole M. Isbel; Jeff S. Coombes

Abstract Objectives Patients with chronic kidney disease have impaired muscle metabolism, resulting in muscle atrophy. Oxidative stress has previously been identified as a significant contributor to muscle atrophy in other populations, but the contribution in chronic kidney disease is unknown. The aim of this study was to investigate the association between oxidative stress, grip strength, and lean mass in patients with chronic kidney disease. Methods This is a cross-sectional study of 152 participants with stage 3 or 4 chronic kidney disease. Outcome measures include grip strength, lean mass, plasma total F2-isoprostanes, inflammation, peak oxygen uptake, and standard clinical measures. Results Thirty four (22.4%) chronic kidney disease patients had elevated oxidative stress levels (plasma F2-isoprostanes >250 pg/ml), with 82% of patients below age-predicted grip strength normative values. There was a significant negative association between plasma F2-isoprostanes and grip strength (r = −0.251) and lean mass (r = −0.243). There were no associations with inflammation markers. Multiple linear regression identified plasma F2-isoprostanes as a significant predictor of grip strength independent of other predictors: sex, diabetes status, body mass index, body fat percent, and phosphate (adjusted r2 = 69.5, P < 0.001). Discussion Plasma F2-isoprostanes were independently associated with reduced strength in chronic kidney disease patients.


Environmental Toxicology | 2015

Thimerosal induces apoptotic and fibrotic changes to kidney epithelial cells in vitro

Maria Fernanda Hornos Carneiro; Christudas Morais; David M. Small; David A. Vesey; Fernando Barbosa; Glenda C. Gobe

Thimerosal is an ethyl mercury‐containing compound used mainly in vaccines as a bactericide. Although the kidney is a key target for mercury toxicity, thimerosal nephrotoxicity has not received the same attention as other mercury species. The aim of this study was to determine the potential cytotoxic mechanisms of thimerosal on human kidney cells. Human kidney proximal tubular epithelial (HK2) cells were exposed for 24 h to thimerosal (0–2 µM), and assessed for cell viability, apoptosis, and cell proliferation; expression of proteins Bax, nuclear factor‐κB subunits, and transforming growth factor‐β1 (TGFβ1); mitochondrial health (JC‐1, MitoTracker Red CMXRos); and fibronectin levels (enzyme‐linked immunosorbent assay). Thimerosal diminished HK2 cell viability and mitosis, promoted apoptosis, impaired the mitochondrial permeability transition, enhanced Bax and TGFβ1 expression, and augmented fibronectin secretion. This is the first report about kidney cell death and pro‐fibrotic mechanisms promoted by thimerosal. Collectively, these in vitro results demonstrate that (1) thimerosal induces kidney epithelial cell apoptosis via upregulating Bax and the mitochondrial apoptotic pathway, and (2) thimerosal is a potential pro‐fibrotic agent in human kidney cells. We suggest that new evidence on toxicity as well as continuous surveillance in terms of fibrogenesis is required concerning thimerosal use.

Collaboration


Dive into the David M. Small's collaboration.

Top Co-Authors

Avatar

Glenda C. Gobe

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David W. Johnson

Princess Alexandra Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Vesey

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sandrine Roy

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

K. L. Ng

Princess Alexandra Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge