Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David McNulty is active.

Publication


Featured researches published by David McNulty.


ACS Applied Materials & Interfaces | 2015

Electrodeposited Structurally Stable V2O5 Inverse Opal Networks as High Performance Thin Film Lithium Batteries.

Eileen Armstrong; David McNulty; Hugh Geaney; Colm O’Dwyer

High performance thin film lithium batteries using structurally stable electrodeposited V2O5 inverse opal (IO) networks as cathodes provide high capacity and outstanding cycling capability and also were demonstrated on transparent conducting oxide current collectors. The superior electrochemical performance of the inverse opal structures was evaluated through galvanostatic and potentiodynamic cycling, and the IO thin film battery offers increased capacity retention compared to micron-scale bulk particles from improved mechanical stability and electrical contact to stainless steel or transparent conducting current collectors from bottom-up electrodeposition growth. Li(+) is inserted into planar and IO structures at different potentials, and correlated to a preferential exposure of insertion sites of the IO network to the electrolyte. Additionally, potentiodynamic testing quantified the portion of the capacity stored as surface bound capacitive charge. Raman scattering and XRD characterization showed how the IO allows swelling into the pore volume rather than away from the current collector. V2O5 IO coin cells offer high initial capacities, but capacity fading can occur with limited electrolyte. Finally, we demonstrate that a V2O5 IO thin film battery prepared on a transparent conducting current collector with excess electrolyte exhibits high capacities (∼200 mAh g(-1)) and outstanding capacity retention and rate capability.


Journal of Materials Chemistry | 2016

Hierarchical NiO–In2O3 microflower (3D)/ nanorod (1D) hetero-architecture as a supercapattery electrode with excellent cyclic stability

N. Padmanathan; Han Shao; David McNulty; Colm O'Dwyer; Kafil M. Razeeb

Three-dimensional (3D) hybrid nanostructured electrodes based on one-dimensional (1D) nanorod arrays have recently attracted great attention owing to their synergistic effect of three-dimensional nanostructures and application in energy storage and conversion devices. Here, we designed a heterostructured supercapattery electrode from a combination of NiO and In2O3 with a hierarchical hybrid microstructure on nickel foam (NF). Simultaneous heterogeneous growth of 1D nanorod-supported 3D microflower structures on nickel foam enhanced the non-capacitive faradaic energy storage performance due to the synergistic contribution from hierarchical hybrid nanostructure. The heterostructured electrode exhibits a high specific capacity of 766.65 C g−1 at 5 A g−1 and remains as high as 285.12 C g−1 at 30 A g−1. The composite electrode shows an excellent rate performance as a sandwich type symmetric device, offering a high specific energy of 26.24 W h kg−1 at a high power of 1752.8 W kg−1. The device shows a long term cyclic stability with 79% retention after 50 000 cycles, which is remarkable for an oxide based pseudocapacitor. These results suggest that NiO–In2O3 with hybrid micro/nano architecture could be a promising electrode for next generation supercapatteries.


ACS Applied Materials & Interfaces | 2016

Supercapattery Based on Binder-Free Co3(PO4)2·8H2O Multilayer Nano/Microflakes on Nickel Foam

Han Shao; N. Padmanathan; David McNulty; Colm O'Dwyer; Kafil M. Razeeb

A binder-free cobalt phosphate hydrate (Co3(PO4)2·8H2O) multilayer nano/microflake structure is synthesized on nickel foam (NF) via a facile hydrothermal process. Four different concentrations (2.5, 5, 10, and 20 mM) of Co2+ and PO4-3 were used to obtain different mass loading of cobalt phosphate on the nickel foam. The Co3(PO4)2·8H2O modified NF electrode (2.5 mM) shows a maximum specific capacity of 868.3 C g-1 (capacitance of 1578.7 F g-1) at a current density of 5 mA cm-2 and remains as high as 566.3 C g-1 (1029.5 F g-1) at 50 mA cm-2 in 1 M NaOH. A supercapattery assembled using Co3(PO4)2·8H2O/NF as the positive electrode and activated carbon/NF as the negative electrode delivers a gravimetric capacitance of 111.2 F g-1 (volumetric capacitance of 4.44 F cm-3). Furthermore, the device offers a high specific energy of 29.29 Wh kg-1 (energy density of 1.17 mWh cm-3) and a specific power of 4687 W kg-1 (power density of 187.5 mW cm-3).


Science and Technology of Advanced Materials | 2016

2D and 3D photonic crystal materials for photocatalysis and electrochemical energy storage and conversion

Gillian Collins; Eileen Armstrong; David McNulty; Sally O’Hanlon; Hugh Geaney; Colm O’Dwyer

Abstract This perspective reviews recent advances in inverse opal structures, how they have been developed, studied and applied as catalysts, catalyst support materials, as electrode materials for batteries, water splitting applications, solar-to-fuel conversion and electrochromics, and finally as photonic photocatalysts and photoelectrocatalysts. Throughout, we detail some of the salient optical characteristics that underpin recent results and form the basis for light-matter interactions that span electrochemical energy conversion systems as well as photocatalytic systems. Strategies for using 2D as well as 3D structures, ordered macroporous materials such as inverse opals are summarized and recent work on plasmonic–photonic coupling in metal nanoparticle-infiltrated wide band gap inverse opals for enhanced photoelectrochemistry are provided.


Journal of Materials Chemistry | 2016

High performance inverse opal Li-ion battery with paired intercalation and conversion mode electrodes

David McNulty; Hugh Geaney; Eileen Armstrong; Colm O'Dwyer

Structured porous materials have provided several breakthroughs that have facilitated high rate capability, better capacity retention and material stability in Li-ion batteries. However, most advances have been limited to half cells or lithium batteries, and with a single mode of charge storage (intercalation, conversion, or alloying etc.). The use of dual-mode charge storage with non-traditional material pairings, while maintaining the numerous benefits of nanoscale materials, could significantly improve the capacity, energy density, stability and overall battery safety considerably. Here, we demonstrate an efficient, high capacity full inverse opal Li-ion battery with excellent cycle life, where both the cathode and anode binder-free electrodes are composed of 3D nanocrystal assemblies as inverse opal (IO) structures of intercalation-mode V2O5 IO cathodes and conversion-mode Co3O4 IO anodes. Electrochemically charged Co3O4 IOs function as Li-ion anodes and the full V2O5/Co3O4 cell exhibits superior performance compared to lithium batteries or half cells of either IO material, with voltage window compatibility for high capacity and energy density. Through asymmetric charge–discharge tests, the V2O5 IO/Co3O4 IO full Li-ion cell can be quickly charged, and discharged both quickly and slowly without any capacity decay. We demonstrate that issues due to the decomposition of the electrolyte with increased cycling can be overcome by complete electrolyte infiltration to remove capacity fading from long term cycling at high capacity and rate. Lastly, we show that the V2O5 IO/Co3O4 IO full Li-ion cells cycled in 2 and 3-electrode flooded cells maintain 150 mA h g−1 and remarkably, show no capacity fade at any stage during cycling for at least 175 cycles. The realization of an all-3D structured anode and cathode geometry with new mutually co-operative dual-mode charge storage mechanisms and efficient electrolyte penetration to the nanocrystalline network of material provides a testbed for advancing high rate, high capacity, stable Li-ion batteries using a wide range of materials pairings.


Nanoscale | 2016

The structural conversion from α-AgVO3 to β-AgVO3: Ag nanoparticle decorated nanowires with application as cathode materials for Li-ion batteries

David McNulty; Quentin M. Ramasse; Colm O'Dwyer

The majority of electrode materials in batteries and related electrochemical energy storage devices are fashioned into slurries via the addition of a conductive additive and a binder. However, aggregation of smaller diameter nanoparticles in current generation electrode compositions can result in non-homogeneous active materials. Inconsistent slurry formulation may lead to inconsistent electrical conductivity throughout the material, local variations in electrochemical response, and the overall cell performance. Here we demonstrate the hydrothermal preparation of Ag nanoparticle (NP) decorated α-AgVO3 nanowires (NWs) and their conversion to tunnel structured β-AgVO3 NWs by annealing to form a uniform blend of intercalation materials that are well connected electrically. The synthesis of nanostructures with chemically bound conductive nanoparticles is an elegant means to overcome the intrinsic issues associated with electrode slurry production, as wire-to-wire conductive pathways are formed within the overall electrode active mass of NWs. The conversion from α-AgVO3 to β-AgVO3 is explained in detail through a comprehensive structural characterization. Meticulous EELS analysis of β-AgVO3 NWs offers insight into the true β-AgVO3 structure and how the annealing process facilitates a higher surface coverage of Ag NPs directly from ionic Ag content within the α-AgVO3 NWs. Variations in vanadium oxidation state across the surface of the nanowires indicate that the β-AgVO3 NWs have a core-shell oxidation state structure, and that the vanadium oxidation state under the Ag NP confirms a chemically bound NP from reduction of diffused ionic silver from the α-AgVO3 NWs core material. Electrochemical comparison of α-AgVO3 and β-AgVO3 NWs confirms that β-AgVO3 offers improved electrochemical performance. An ex situ structural characterization of β-AgVO3 NWs after the first galvanostatic discharge and charge offers new insight into the Li+ reaction mechanism for β-AgVO3. Ag+ between the van der Waals layers of the vanadium oxide is reduced during discharge and deposited as metallic Ag, the vacant sites are then occupied by Li+.


Scientific Reports | 2017

Carbon-Coated Honeycomb Ni-Mn-Co-O Inverse Opal: A High Capacity Ternary Transition Metal Oxide Anode for Li-ion Batteries

David McNulty; Hugh Geaney; Colm O’Dwyer

We present the formation of a carbon-coated honeycomb ternary Ni-Mn-Co-O inverse opal as a conversion mode anode material for Li-ion battery applications. In order to obtain high capacity via conversion mode reactions, a single phase crystalline honeycombed IO structure of Ni-Mn-Co-O material was first formed. This Ni-Mn-Co-O IO converts via reversible redox reactions and Li2O formation to a 3D structured matrix assembly of nanoparticles of three (MnO, CoO and NiO) oxides, that facilitates efficient reactions with Li. A carbon coating maintains the structure without clogging the open-worked IO pore morphology for electrolyte penetration and mass transport of products during cycling. The highly porous IO was compared in a Li-ion half-cell to nanoparticles of the same material and showed significant improvement in specific capacity and capacity retention. Further optimization of the system was investigated by incorporating a vinylene carbonate additive into the electrolyte solution which boosted performance, offering promising high-rate performance and good capacity retention over extended cycling. The analysis confirms the possibility of creating a ternary transition metal oxide material with binder free accessible open-worked structure to allow three conversion mode oxides to efficiently cycle as an anode material for Li-ion battery applications.


219th ECS Meeting | 2011

Synthesis and Characterization of Layered Vanadium Oxide Nanotubes for Rechargeable Lithium Batteries

David McNulty; D. Noel Buckley; Colm O'Dwyer

Higher Education Authority (under the framework of the INSPIRE programme, funded by the Irish Governments Programme for Research in Third Level Institutions, Cycle 4, National Development Plan 2007-2013)


RSC Advances | 2016

Optimizing the structure and yield of vanadium oxide nanotubes by periodic 2D layer scrolling

David McNulty; D. Noel Buckley; Colm O'Dwyer

Metal oxide nanotubes with wide interlayer van der Waals spaces are important materials for a range of applications from energy storage to catalysis, and from energy efficient catalysts and metal–insulator systems to smart window technologies. Controlling the crystalline quality is critical for the materials physical properties on the nanoscale. We report a systematic investigation into the optimization of structural quality and yield of vanadium oxide nanotubes (VONTs) synthesized by hydrothermal treatment. Usually, interdigitation of alkyl-amine chains occurs between V2O5 lamina, a stitching process that allows scrolling of 2D crystalline sheets into nanotubes with consistently high quality. Through detailed microscopy and spectroscopy examination, we demonstrate that two amine molecules per V2O5 unit optimizes the structure, quality and yield of the VONTs, and that uniform coverage of the juxtaposed V2O5 surfaces in the interlayer spacing minimizes non-uniformities and defects. This observation is consistent for a range of primary amine lengths (hexylamine to hexadecylamine). Through statistical investigation of hundreds of VONTs under each condition, we uncover the effect of amine chain length of V2O5 2D sheet thickness, and mechanism for optimum VONT quality. Finally, we summarize non-uniformities during VONT synthesis including, bending, spiraling and twisting of the scrolled crystalline layers.


Small | 2016

Growing Oxide Nanowires and Nanowire Networks by Solid State Contact Diffusion into Solution-Processed Thin Films.

Colm Glynn; David McNulty; Hugh Geaney; Colm O'Dwyer

New techniques to directly grow metal oxide nanowire networks without the need for initial nanoparticle seed deposition or postsynthesis nanowire casting will bridge the gap between bottom-up formation and top-down processing for many electronic, photonic, energy storage, and conversion technologies. Whether etched top-down, or grown from catalyst nanoparticles bottom-up, nanowire growth relies on heterogeneous material seeds. Converting surface oxide films, ubiquitous in the microelectronics industry, to nanowires and nanowire networks by the incorporation of extra species through interdiffusion can provide an alternative deposition method. It is shown that solution-processed thin films of oxides can be converted and recrystallized into nanowires and networks of nanowires by solid-state interdiffusion of ionic species from a mechanically contacted donor substrate. NaVO3 nanowire networks on smooth Si/SiO2 and granular fluorine-doped tin oxide surfaces can be formed by low-temperature annealing of a Na diffusion species-containing donor glass to a solution-processed V2 O5 thin film, where recrystallization drives nanowire growth according to the crystal habit of the new oxide phase. This technique illustrates a new method for the direct formation of complex metal oxide nanowires on technologically relevant substrates, from smooth semiconductors, to transparent conducting materials and interdigitated device structures.

Collaboration


Dive into the David McNulty's collaboration.

Top Co-Authors

Avatar

Colm O'Dwyer

University College Cork

View shared research outputs
Top Co-Authors

Avatar

Hugh Geaney

University of Limerick

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Colm O’Dwyer

Tyndall National Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Colm Glynn

University College Cork

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Han Shao

University College Cork

View shared research outputs
Researchain Logo
Decentralizing Knowledge