Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David S. Garbe is active.

Publication


Featured researches published by David S. Garbe.


Molecular Pharmacology | 2010

Monoacylglycerol lipase activity is a critical modulator of the tone and integrity of the endocannabinoid system

Pranab K. Chanda; Ying Gao; Lilly Mark; Joan Btesh; Brian W. Strassle; Peimin Lu; Michael J. Piesla; Mei-Yi Zhang; Brendan Bingham; Albert J. Uveges; Dianne Kowal; David S. Garbe; Evguenia V. Kouranova; Robert H. Ring; Brian Bates; Menelas N. Pangalos; Jeffrey D. Kennedy; Garth T. Whiteside; Tarek A. Samad

Endocannabinoids are lipid molecules that serve as natural ligands for the cannabinoid receptors CB1 and CB2. They modulate a diverse set of physiological processes such as pain, cognition, appetite, and emotional states, and their levels and functions are tightly regulated by enzymatic biosynthesis and degradation. 2-Arachidonoylglycerol (2-AG) is the most abundant endocannabinoid in the brain and is believed to be hydrolyzed primarily by the serine hydrolase monoacylglycerol lipase (MAGL). Although 2-AG binds and activates cannabinoid receptors in vitro, when administered in vivo, it induces only transient cannabimimetic effects as a result of its rapid catabolism. Here we show using a mouse model with a targeted disruption of the MAGL gene that MAGL is the major modulator of 2-AG hydrolysis in vivo. Mice lacking MAGL exhibit dramatically reduced 2-AG hydrolase activity and highly elevated 2-AG levels in the nervous system. A lack of MAGL activity and subsequent long-term elevation of 2-AG levels lead to desensitization of brain CB1 receptors with a significant reduction of cannabimimetic effects of CB1 agonists. Also consistent with CB1 desensitization, MAGL-deficient mice do not show alterations in neuropathic and inflammatory pain sensitivity. These findings provide the first genetic in vivo evidence that MAGL is the major regulator of 2-AG levels and signaling and reveal a pivotal role for 2-AG in modulating CB1 receptor sensitization and endocannabinoid tone.


Science | 2009

A Frazzled/DCC-Dependent Transcriptional Switch Regulates Midline Axon Guidance

Long Yang; David S. Garbe; Greg J. Bashaw

Stop-Go Axon Crossing Developing axons may or may not cross the bodys midline according to a balance between repulsive and attractive guidance factors. As an axon first approaches the midline, a repressive receptor encoded by the comm gene is inactivated by relocation within the cell. After the axon crosses the midline, the repressive receptor is reactivated, keeping the axon from crossing back. Yang et al. (p. 944, published online 26 March; see the Perspective by Kidd) now show that in Drosophila the comm gene is regulated by the attractive receptor known as Frazzled. The Frazzled protein thus functions in two ways: It initiates attraction in response to a ligand and it activates transcription of the comm gene, keeping the repressive signal out of the action. A single receptor in Drosophila is involved in two molecular strategies that coordinate axon guidance. Precise wiring of the nervous system depends on coordinating the action of conserved families of proteins that direct axons to their appropriate targets. Slit-roundabout repulsion and netrin–deleted in colorectal cancer (DCC) (frazzled) attraction must be tightly regulated to control midline axon guidance in vertebrates and invertebrates, but the mechanism mediating this regulation is poorly defined. Here, we show that the Fra receptor has two genetically separable functions in regulating midline guidance in Drosophila. First, Fra mediates canonical chemoattraction in response to netrin, and, second, it functions independently of netrin to activate commissureless transcription, allowing attraction to be coupled to the down-regulation of repulsion in precrossing commissural axons.


Critical Reviews in Biochemistry and Molecular Biology | 2004

Axon Guidance at the Midline: From Mutants to Mechanisms

David S. Garbe; Greg J. Bashaw

How axons in the developing nervous system successfully navigate to their correct targets is a fundamental problem in neurobiology. Understanding the mechanisms that mediate axon guidance will give important insight into how the nervous system is correctly wired during development and may have implications for therapeutic approaches to developmental brain disorders and nerve regeneration. Achieving this understanding will require unraveling the molecular logic that ensures the proper expression and localization of axon guidance cues and receptors, and elucidating the signaling events that regulate the growth cone cytoskeleton in response to guidance receptor activation. Studies of axon guidance at the midline of many experimental systems, from the ventral midline of Drosophila to the vertebrate spinal cord, have led to important mechanistic insights into the complex problem of wiring the nervous system. Here we review recent advances in understanding the regulation of midline axon guidance, with a particular emphasis on the contributions made from molecular genetic studies of invertebrate model systems.


The Journal of Neuroscience | 2007

Independent Functions of Slit–Robo Repulsion and Netrin–Frazzled Attraction Regulate Axon Crossing at the Midline in Drosophila

David S. Garbe; Greg J. Bashaw

Slit and Netrin and their respective neuronal receptors play critical roles in patterning axonal connections in the developing nervous system by regulating the decision of whether or not to cross the midline. Studies of both invertebrate and vertebrate systems support the idea that Netrin, secreted by midline cells, signals through DCC (Deleted in Colorectal Carcinoma)/UNC40/Frazzled receptors to attract commissural axons toward and across the midline, whereas Slit signals through Robo family receptors to prevent commissural axons from recrossing the midline, as well as to prevent ipsilateral axons from ever crossing. Recent evidence from both Xenopus neuronal cell culture and Drosophila genetics have suggested that these signals may interact more directly in a hierarchical relationship, such that one response extinguishes the other. Here we present loss- and gain-of-function genetic evidence showing that the influence of Slit and Netrin on midline axon crossing is dictated by both independent and interdependent signaling functions of the Robo and Frazzled (Fra) receptors. Our results are not consistent with the proposal based on genetic analysis in Drosophila that the sole function of Slit and Robo during midline guidance is to repress Netrin attraction.


Development | 2007

Cytoplasmic domain requirements for Frazzled-mediated attractive axon turning at the Drosophila midline

David S. Garbe; Michael O'Donnell; Greg J. Bashaw

The conserved DCC ligand-receptor pair Netrin and Frazzled (Fra) has a well-established role in axon guidance. However, the specific sequence motifs required for orchestrating downstream signaling events are not well understood. Evidence from vertebrates suggests that P3 is important for transducing Netrin-mediated turning and outgrowth, whereas in C. elegans it was shown that the P1 and P2 conserved sequence motifs are required for a gain-of-function outgrowth response. Here, we demonstrate that Drosophila fra mutant embryos exhibit guidance defects in a specific subset of commissural axons and these defects can be rescued cell-autonomously by expressing wild-type Fra exclusively in these neurons. Furthermore, structure-function studies indicate that the conserved P3 motif (but not P1 or P2) is required for growth cone attraction at the Drosophila midline. Surprisingly, in contrast to vertebrate DCC, P3 does not mediate receptor self-association, and self-association is not sufficient to promote Fra-dependent attraction. We also show that in contrast to previous findings, the cytoplasmic domain of Fra is not required for axonal localization and that neuronal expression of a truncated Fra receptor lacking the entire cytoplasmic domain (FraΔC) results in dose-dependent defects in commissural axon guidance. These findings represent the first systematic dissection of the cytoplasmic domains required for Fra-mediated axon attraction in the context of full-length receptors in an intact organism and provide important insights into attractive axon guidance at the midline.


Development | 2007

β-Spectrin functions independently of Ankyrin to regulate the establishment and maintenance of axon connections in the Drosophila embryonic CNS

David S. Garbe; Amlan Das; Ronald R. Dubreuil; Greg J. Bashaw

α- and β-Spectrin are major components of a submembrane cytoskeletal network connecting actin filaments to integral plasma membrane proteins. Besides its structural role in red blood cells, the Spectrin network is thought to function in non-erythroid cells during protein targeting and membrane domain formation. Here, we demonstrate that β-Spectrin is required in neurons for proper midline axon guidance in the Drosophila embryonic CNS. In β-spectrin mutants many axons inappropriately cross the CNS midline, suggesting a role forβ -Spectrin in midline repulsion. Surprisingly, neither the Ankyrin-binding nor the pleckstrin homology (PH) domains of β-Spectrin are required for accurate guidance decisions. α-Spectrin is dependent upon β-Spectrin for its normal subcellular localization and/or maintenance, whereas α-spectrin mutants exhibit a redistribution of β-Spectrin to the axon scaffold.β -spectrin mutants show specific dose-dependent genetic interactions with the midline repellent slit and its neuronal receptor roundabout (robo), but not with other guidance molecules. The results suggest that β-Spectrin contributes to midline repulsion through the regulation of Slit-Robo pathway components. We propose that the Spectrin network is playing a role independently of Ankyrin in the establishment and/or maintenance of specialized membrane domains containing guidance molecules that ensure the fidelity of axon repulsion at the midline.


PLOS Genetics | 2013

Cooperative Interaction between Phosphorylation Sites on PERIOD Maintains Circadian Period in Drosophila

David S. Garbe; Yanshan Fang; Xiangzhong Zheng; Mallory Sowcik; Rana Anjum; Steven P. Gygi; Amita Sehgal

Circadian rhythms in Drosophila rely on cyclic regulation of the period (per) and timeless (tim) clock genes. The molecular cycle requires rhythmic phosphorylation of PER and TIM proteins, which is mediated by several kinases and phosphatases such as Protein Phosphatase-2A (PP2A) and Protein Phosphatase-1 (PP1). Here, we used mass spectrometry to identify 35 “phospho-occupied” serine/threonine residues within PER, 24 of which are specifically regulated by PP1/PP2A. We found that cell culture assays were not good predictors of protein function in flies and so we generated per transgenes carrying phosphorylation site mutations and tested for rescue of the per01 arrhythmic phenotype. Surprisingly, most transgenes restore wild type rhythms despite carrying mutations in several phosphorylation sites. One particular transgene, in which T610 and S613 are mutated to alanine, restores daily rhythmicity, but dramatically lengthens the period to ∼30 hrs. Interestingly, the single S613A mutation extends the period by 2–3 hours, while the single T610A mutation has a minimal effect, suggesting these phospho-residues cooperate to control period length. Conservation of S613 from flies to humans suggests that it possesses a critical clock function, and mutational analysis of residues surrounding T610/S613 implicates the entire region in determining circadian period. Biochemical and immunohistochemical data indicate defects in overall phosphorylation and altered timely degradation of PER carrying the double or single S613A mutation(s). The PER-T610A/S613A mutant also alters CLK phosphorylation and CLK-mediated output. Lastly, we show that a mutation at a previously identified site, S596, is largely epistatic to S613A, suggesting that S613 negatively regulates phosphorylation at S596. Together these data establish functional significance for a new domain of PER, demonstrate that cooperativity between phosphorylation sites maintains PER function, and support a model in which specific phosphorylated regions regulate others to control circadian period.


Sleep | 2016

The Drosophila Circadian Clock Gates Sleep through Time-of-Day Dependent Modulation of Sleep-Promoting Neurons.

Daniel J. Cavanaugh; Abigail Vigderman; Terry Dean; David S. Garbe; Amita Sehgal

STUDY OBJECTIVES Sleep is under the control of homeostatic and circadian processes, which interact to determine sleep timing and duration, but the mechanisms through which the circadian system modulates sleep are largely unknown. We therefore used adult-specific, temporally controlled neuronal activation and inhibition to identify an interaction between the circadian clock and a novel population of sleep-promoting neurons in Drosophila. METHODS Transgenic flies expressed either dTRPA1, a neuronal activator, or Shibire(ts1), an inhibitor of synaptic release, in small subsets of neurons. Sleep, as determined by activity monitoring and video tracking, was assessed before and after temperature-induced activation or inhibition using these effector molecules. We compared the effect of these manipulations in control flies and in mutant flies that lacked components of the molecular circadian clock. RESULTS Adult-specific activation or inhibition of a population of neurons that projects to the sleep-promoting dorsal Fan-Shaped Body resulted in bidirectional control over sleep. Interestingly, the magnitude of the sleep changes were time-of-day dependent. Activation of sleep-promoting neurons was maximally effective during the middle of the day and night, and was relatively ineffective during the day-to-night and night-to-day transitions. These time-ofday specific effects were absent in flies that lacked functional circadian clocks. CONCLUSIONS We conclude that the circadian system functions to gate sleep through active inhibition at specific times of day. These data identify a mechanism through which the circadian system prevents premature sleep onset in the late evening, when homeostatic sleep drive is high.


Biology Open | 2015

Context-specific comparison of sleep acquisition systems in Drosophila

David S. Garbe; Wesley L. Bollinger; Abigail Vigderman; Pavel Masek; Jill Gertowski; Amita Sehgal; Alex C. Keene

ABSTRACT Sleep is conserved across phyla and can be measured through electrophysiological or behavioral characteristics. The fruit fly, Drosophila melanogaster, provides an excellent model for investigating the genetic and neural mechanisms that regulate sleep. Multiple systems exist for measuring fly activity, including video analysis and single-beam (SB) or multi-beam (MB) infrared (IR)-based monitoring. In this study, we compare multiple sleep parameters of individual flies using a custom-built video-based acquisition system, and commercially available SB- or MB-IR acquisition systems. We report that all three monitoring systems appear sufficiently sensitive to detect changes in sleep duration associated with diet, age, and mating status. Our data also demonstrate that MB-IR detection appeared more sensitive than the SB-IR for detecting baseline nuances in sleep architecture, while architectural changes associated with varying life-history and environment were generally detected across all acquisition types. Finally, video recording of flies in an arena allowed us to measure the effect of ambient environment on sleep. These experiments demonstrate a robust effect of arena shape and size as well as light levels on sleep duration and architecture, and highlighting the versatility of tracking-based sleep acquisition. These findings provide insight into the context-specific basis for choosing between Drosophila sleep acquisition systems, describe a novel cost-effective system for video tracking, and characterize sleep analysis using the MB-IR sleep analysis. Further, we describe a modified dark-place preference sleep assay using video tracking, confirming that flies prefer to sleep in dark locations. Summary: Multiple sleep acquisition systems provide efficient and accurate methods for measuring sleep duration in Drosophila, while video tracking and multibeam analysis allow for increased flexibility of behavioral paradigms and greater resolution of sleep architecture.


The Journal of Neuroscience | 2008

CNTF: a putative link between dopamine D2 receptors and neurogenesis.

Mayra Mori; Julius J. Jefferson; Michele Hummel; David S. Garbe

Despite a preponderance of evidence highlighting the involvement of dopamine in the regulation of neurogenesis in the adult mammalian brain, the mechanism by which this occurs remains unknown. Previous results demonstrated that dopaminergic nigrostriatal projections regulate neural precursor cell

Collaboration


Dive into the David S. Garbe's collaboration.

Top Co-Authors

Avatar

Greg J. Bashaw

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Amita Sehgal

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Abigail Vigderman

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alex C. Keene

Florida Atlantic University

View shared research outputs
Top Co-Authors

Avatar

Amlan Das

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian Bates

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge