Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Devon A. Lawson is active.

Publication


Featured researches published by Devon A. Lawson.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Isolation and functional characterization of murine prostate stem cells.

Devon A. Lawson; Li Xin; Rita U. Lukacs; Donghui Cheng; Owen N. Witte

The ability to isolate prostate stem cells is essential to explore their role in prostate development and disease. In vitro prostate colony- and sphere-forming assays were used to quantitatively measure murine prostate stem/progenitor cell enrichment and self-renewal. Cell surface markers were screened for their ability to positively or negatively enrich for cells with enhanced growth potential in these assays. Immunohistochemical and FACS analyses demonstrate that specific cell surface markers can be used to discriminate prostate stromal (CD34+), luminal epithelial (CD24+CD49f−), basal epithelial (CD24+CD49f+), hematopoietic (CD45+, Ter119+), and endothelial (CD31+) lineages. Sorting for cells with a CD45−CD31−Ter119−Sca-1+CD49f+ antigenic profile results in a 60-fold enrichment for colony- and sphere-forming cells. These cells can self-renew and expand to form spheres for many generations and can differentiate to produce prostatic tubule structures containing both basal and luminal cells in vivo. These cells also localize to the basal cell layer within the region of the gland that is proximal to the urethra, which has been identified as the prostate stem cell niche. Prostate stem cells can be isolated to a purity of up to 1 in 35 by using this antigenic profile. The remarkable similarity in cell surface profile between prostate and mammary gland stem cells suggests these markers may be conserved among epithelial stem cell populations.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Pten deletion leads to the expansion of a prostatic stem/progenitor cell subpopulation and tumor initiation

Shunyou Wang; Alejandro J. Garcia; Michelle Wu; Devon A. Lawson; Owen N. Witte; Hong Wu

PTEN (phosphatase and tensin homolog deleted on chromosome 10) is a potent tumor suppressor gene frequently mutated in human prostate cancers. Deletion of Pten in a murine model of prostate cancer recapitulates the disease progression seen in humans. Using defined cell lineage markers, we demonstrate that PTEN negatively regulates p63-positive prostatic basal cell proliferation without blocking differentiation. Concomitant with basal cell proliferation is the expansion of a prostate stem/progenitor-like subpopulation as evidenced by the progressive increase of stem cell antigen-1 (Sca-1)- and BCL-2-positive cells. This observation provides strong evidence that basal cell proliferation can be an initiating event for precancerous lesions. Sca-1+ and BCL-2+ progenitors may serve as cancer-initiating cells in this model.


Nature | 2015

Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells

Devon A. Lawson; Nirav R. Bhakta; Kai Kessenbrock; Karin D. Prummel; Ying Yu; Alicia Zhou; Henok Eyob; Sanjeev Balakrishnan; Chih-Yang Wang; Paul Yaswen; Andrei Goga; Zena Werb

Despite major advances in understanding the molecular and genetic basis of cancer, metastasis remains the cause of >90% of cancer-related mortality. Understanding metastasis initiation and progression is critical to developing new therapeutic strategies to treat and prevent metastatic disease. Prevailing theories hypothesize that metastases are seeded by rare tumour cells with unique properties, which may function like stem cells in their ability to initiate and propagate metastatic tumours. However, the identity of metastasis-initiating cells in human breast cancer remains elusive, and whether metastases are hierarchically organized is unknown. Here we show at the single-cell level that early stage metastatic cells possess a distinct stem-like gene expression signature. To identify and isolate metastatic cells from patient-derived xenograft models of human breast cancer, we developed a highly sensitive fluorescence-activated cell sorting (FACS)-based assay, which allowed us to enumerate metastatic cells in mouse peripheral tissues. We compared gene signatures in metastatic cells from tissues with low versus high metastatic burden. Metastatic cells from low-burden tissues were distinct owing to their increased expression of stem cell, epithelial-to-mesenchymal transition, pro-survival, and dormancy-associated genes. By contrast, metastatic cells from high-burden tissues were similar to primary tumour cells, which were more heterogeneous and expressed higher levels of luminal differentiation genes. Transplantation of stem-like metastatic cells from low-burden tissues showed that they have considerable tumour-initiating capacity, and can differentiate to produce luminal-like cancer cells. Progression to high metastatic burden was associated with increased proliferation and MYC expression, which could be attenuated by treatment with cyclin-dependent kinase (CDK) inhibitors. These findings support a hierarchical model for metastasis, in which metastases are initiated by stem-like cells that proliferate and differentiate to produce advanced metastatic disease.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Trop2 identifies a subpopulation of murine and human prostate basal cells with stem cell characteristics

Andrew S. Goldstein; Devon A. Lawson; Donghui Cheng; Wenyi Sun; Isla P. Garraway; Owen N. Witte

The epithelium of the adult prostate contains 3 distinct cell types: basal, luminal, and neuroendocrine. Tissue-regenerative activity has been identified predominantly from the basal cells, isolated by expression of CD49f and stem cell antigen-1 (Sca-1). An important question for the field is whether all basal cells have stem cell characteristics. Prostate-specific microarray databases were interrogated to find candidate surface antigens that could subfractionate the basal cell population. Tumor-associated calcium signal transducer 2 (TACSTD2/Trop2/M1S1/GA733-1) was identified because it was enriched after castration, in prostate sphere cells and in the basal fraction. In the murine prostate, Trop2 shows progenitor characteristics such as localization to the region of the gland proximal to the urethra and enrichment for sphere-forming and colony-forming cells. Trop2 subfractionates the basal cells into 2 populations, both of which express characteristic basal cell markers by quantitative PCR. However, only the basal cells expressing high levels of Trop2 were able to efficiently form spheres in vitro. In the human prostate, where Sca-1 is not expressed, sphere-forming progenitor cells were also isolated based on high expression of Trop2 and CD49f. Trop2-expressing murine basal cells could regenerate prostatic tubules in vivo, whereas the remaining basal cells had minimal activity. Evidence was found for basal, luminal, and neuroendocrine cells in prostatic tubules regenerated from Trop2hi basal cells. In summary, functionally distinct populations of cells exist within the prostate basal compartment and an epithelial progenitor can give rise to neuroendocrine cells in vivo.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Basal epithelial stem cells are efficient targets for prostate cancer initiation

Devon A. Lawson; Yang Zong; Sanaz Memarzadeh; Li Xin; Jiaoti Huang; Owen N. Witte

Prevailing theories suggest that luminal cells are the origin of prostate cancer because it is histologically defined by basal cell loss and malignant luminal cell expansion. We introduced a series of genetic alterations into prospectively identified populations of murine basal/stem and luminal cells in an in vivo prostate regeneration assay. Stromal induction of FGF signaling, increased expression of the ETS family transcription factor ERG1, and constitutive activation of PI3K signaling were evaluated. Combination of activated PI3K signaling and heightened androgen receptor signaling, which is associated with disease progression to androgen independence, was also performed. Even though luminal cells fail to respond, basal/stem cells demonstrate efficient capacity for cancer initiation and can produce luminal-like disease characteristic of human prostate cancer in multiple models. This finding provides evidence in support of basal epithelial stem cells as one target cell for prostate cancer initiation and demonstrates the propensity of primitive cells for tumorigenesis.


Proceedings of the National Academy of Sciences of the United States of America | 2009

ETS family transcription factors collaborate with alternative signaling pathways to induce carcinoma from adult murine prostate cells

Yang Zong; Li Xin; Andrew S. Goldstein; Devon A. Lawson; Michael A. Teitell; Owen N. Witte

Chromosomal rearrangements involving erythroblast transformation specific (ETS) family transcription factors were recently defined as the most common genetic alterations in human prostate cancer. Despite their prevalence, it is unclear what quantitative role they play in either initiation or progression of the disease. Using a lentiviral transduction and dissociated cell prostate regeneration approach, we find that acutely increased expression of ETS proteins in adult murine prostate epithelial cells is sufficient to induce the formation of epithelial hyperplasia and focal prostatic intraepithelial neoplasia (PIN) lesions, but not progression to carcinoma. However, combined expression of ERG with additional genetic alternations associated with human prostate cancer can lead to aggressive disease. Although ERG overexpression does not cooperate with loss of the tumor suppressor p53, it does collaborate with alterations in PI3K signaling, such as Pten knockdown or AKT up-regulation, to produce a well-differentiated adenocarcinoma. Most striking is our finding that overexpression of androgen receptor (AR) does not give rise to any hyperplastic lesions, but when combined with high levels of ERG, it promotes the development of a more poorly differentiated, invasive adenocarcinoma. These findings suggest that in human prostate cancer, the most potent function of ETS gene fusions may be to synergize with alternative genetic events and provide different pathways for carcinoma production and invasive behavior. Our results provide direct evidence for selective cooperating events in ERG-induced prostate tumorigenesis and offer a rational basis for combined therapeutic interventions against multiple oncogenic pathways in prostate cancer.


Stem Cells | 2007

Self‐Renewal and Multilineage Differentiation In Vitro from Murine Prostate Stem Cells

Li Xin; Rita U. Lukacs; Devon A. Lawson; Donghui Cheng; Owen N. Witte

Murine prostate stem cells express integrin α6, which modulates survival, proliferation, and differentiation signaling through its interaction with the extracellular protein laminin. When plated in vitro in laminin containing Matrigel medium, 1 of 500–1,000 murine prostate cells can grow and form clonogenic spheroid structures that we term prostate spheres. Prostate spheres can be serially passaged individually or in bulk to generate daughter spheres with similar composition, demonstrating that sphere‐forming cells are capable of self‐renewal. Spheres spontaneously undergo lineage specification for basal and transit‐amplifying cell types. P63‐expressing cells localized to the outer layers of prostate spheres possess higher self‐renewal capacity, whereas cells toward the center display a more differentiated transit‐amplifying phenotype, as demonstrated by the expression of the prostate stem cell antigen. When dihydrotestosterone is added to the medium, the androgen receptor is stabilized, is imported to the nucleus, and drives differentiation to a luminal cell‐like phenotype. A fraction of sphere cells returned to an in vivo environment can undergo differentiation and morphogenesis to form prostate tubular structures with defined basal and luminal layers accompanied by prostatic secretions. This study demonstrates self‐renewal and multilineage differentiation from single adult prostate stem/progenitor cells in a specific in vitro microenvironment.


Journal of Clinical Investigation | 2007

Stem cells in prostate cancer initiation and progression

Devon A. Lawson; Owen N. Witte

Peter Nowell and David Hungerfords discovery of the Philadelphia chromosome facilitated many critical studies that have led to a paradigm shift in our understanding of cancer as a disease of stem cells. This Review focuses on the application of these concepts to investigation of the role of stem cells in prostate cancer initiation and progression. Major strides in the development of in vitro and in vivo assays have enabled identification and characterization of prostate stem cells as well as functional evaluation of the tumorigenic effects of prostate cancer-related genetic alterations.


Cancer Research | 2009

Lin−Sca-1+CD49fhigh Stem/Progenitors Are Tumor-Initiating Cells in the Pten-Null Prostate Cancer Model

David J. Mulholland; Li Xin; Ashkan Morim; Devon A. Lawson; Owen N. Witte; Hong Wu

We have shown previously that Pten deletion leads to the expansion of subset of prostate cancer cells positive for CK5 and p63. Although this subpopulation may be involved in tumor initiation or progression, studies to date have not functionally validated this hypothesis. Using in vitro sphere-forming assay and in vivo prostate reconstitution assay, we show here the presence of a tumor-initiating subpopulation in the Pten prostate cancer mouse model. Specifically, we show that the Lin(-)Sca-1(+)CD49f(high) (LSC) subpopulation overlaps with CK5(+);p63(+) cells and is significantly increased during prostate cancer initiation and progression and after castration. Mutant spheres mimic the structural organization of the epithelial compartment in the Pten-null primary tumor. Sorted LSC cells from either Pten-null spheres or primary tumors are able to regenerate prostate epithelial structure with cancerous morphology, closely mimicking that of primary cancers. Therefore, the LSC subpopulation is capable of initiating a cancerous phenotype that recapitulates the pathology seen in the primary lesions of the Pten mutant prostate model.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Progression of prostate cancer by synergy of AKT with genotropic and nongenotropic actions of the androgen receptor

Li Xin; Michael A. Teitell; Devon A. Lawson; Andrew Kwon; Ingo K. Mellinghoff; Owen N. Witte

Classic work by Huggins and Hodges demonstrated that human prostate cancer regresses dramatically during antihormonal therapy but recurs frequently with androgen independence. Perturbations in the androgen receptor (AR) and PTEN–AKT signaling axes are significantly correlated with the progression of prostate cancer. Genetic alterations of the AR cause receptor hypersensitivity, promiscuity, and androgen-independent receptor transactivation. Prostate cancers maintain an elevated AKT activity through the loss of PTEN function or the establishment of autocrine signaling by growth factors and cytokines. We used an in vivo prostate regeneration system to investigate the biological potency of the potential crosstalk between these two signal transduction pathways. We demonstrate a direct synergy between AKT and AR signaling that is sufficient to initiate and progress naïve adult murine prostatic epithelium to frank carcinoma and override the effect of androgen ablation. Both genotropic and nongenotropic signals mediated by AR are essential for this synergistic effect. However, phosphorylation of AR by AKT at Ser-213 and Ser-791 is not critical for this synergy. These results suggest that more efficient therapeutics for advanced prostate cancer may need to target simultaneously AR signaling and AKT or the growth factor receptor tyrosine kinases that activate AKT.

Collaboration


Dive into the Devon A. Lawson's collaboration.

Top Co-Authors

Avatar

Zena Werb

University of California

View shared research outputs
Top Co-Authors

Avatar

Owen N. Witte

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li Xin

University of California

View shared research outputs
Top Co-Authors

Avatar

Andrei Goga

University of California

View shared research outputs
Top Co-Authors

Avatar

Paul Yaswen

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alicia Y. Zhou

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge