Kai Kessenbrock
University of California, San Francisco
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kai Kessenbrock.
Cell | 2010
Kai Kessenbrock; Vicki Plaks; Zena Werb
Extracellular proteolysis mediates tissue homeostasis. In cancer, altered proteolysis leads to unregulated tumor growth, tissue remodeling, inflammation, tissue invasion, and metastasis. The matrix metalloproteinases (MMPs) represent the most prominent family of proteinases associated with tumorigenesis. Recent technological developments have markedly advanced our understanding of MMPs as modulators of the tumor microenvironment. In addition to their role in extracellular matrix turnover and cancer cell migration, MMPs regulate signaling pathways that control cell growth, inflammation, or angiogenesis and may even work in a nonproteolytic manner. These aspects of MMP function are reorienting our approaches to cancer therapy.
Nature Methods | 2008
Julia Riedl; Alvaro H. Crevenna; Kai Kessenbrock; Jerry Haochen Yu; Dorothee Neukirchen; Michal Bista; Frank Bradke; Dieter E. Jenne; Tad A. Holak; Zena Werb; Michael Sixt; Roland Wedlich-Söldner
Live imaging of the actin cytoskeleton is crucial for the study of many fundamental biological processes, but current approaches to visualize actin have several limitations. Here we describe Lifeact, a 17-amino-acid peptide, which stained filamentous actin (F-actin) structures in eukaryotic cells and tissues. Lifeact did not interfere with actin dynamics in vitro and in vivo and in its chemically modified peptide form allowed visualization of actin dynamics in nontransfectable cells.
Nature Medicine | 2009
Kai Kessenbrock; Markus Krumbholz; Ulf Schönermarck; Walter Back; Wolfgang Gross; Zena Werb; Hermann-Josef Gröne; Volker Brinkmann; Dieter E. Jenne
Small-vessel vasculitis (SVV) is a chronic autoinflammatory condition linked to antineutrophil cytoplasm autoantibodies (ANCAs). Here we show that chromatin fibers, so-called neutrophil extracellular traps (NETs), are released by ANCA-stimulated neutrophils and contain the targeted autoantigens proteinase-3 (PR3) and myeloperoxidase (MPO). Deposition of NETs in inflamed kidneys and circulating MPO-DNA complexes suggest that NET formation triggers vasculitis and promotes the autoimmune response against neutrophil components in individuals with SVV.
Journal of Clinical Investigation | 2012
Axelle Caudrillier; Kai Kessenbrock; Brian M. Gilliss; John X. Nguyen; Marisa B. Marques; Marc Monestier; Pearl Toy; Zena Werb; Mark R. Looney
There is emerging evidence that platelets are major contributors to inflammatory processes through intimate associations with innate immune cells. Here, we report that activated platelets induce the formation of neutrophil extracellular traps (NETs) in transfusion-related acute lung injury (TRALI), which is the leading cause of death after transfusion therapy. NETs are composed of decondensed chromatin decorated with granular proteins that function to trap extracellular pathogens; their formation requires the activation of neutrophils and release of their DNA in a process that may or may not result in neutrophil death. In a mouse model of TRALI that is neutrophil and platelet dependent, NETs appeared in the lung microvasculature and NET components increased in the plasma. We detected NETs in the lungs and plasma of human TRALI and in the plasma of patients with acute lung injury. In the experimental TRALI model, targeting platelet activation with either aspirin or a glycoprotein IIb/IIIa inhibitor decreased NET formation and lung injury. We then directly targeted NET components with a histone blocking antibody and DNase1, both of which protected mice from TRALI. These data suggest that NETs contribute to lung endothelial injury and that targeting NET formation may be a promising new direction for the treatment of acute lung injury.
Journal of Clinical Investigation | 2008
Kai Kessenbrock; Leopold Fröhlich; Michael Sixt; Tim Lämmermann; Heiko Pfister; Andrew Bateman; Azzaq Belaaouaj; Johannes Ring; Markus Ollert; Reinhard Fässler; Dieter E. Jenne
Neutrophil granulocytes form the bodys first line of antibacterial defense, but they also contribute to tissue injury and noninfectious, chronic inflammation. Proteinase 3 (PR3) and neutrophil elastase (NE) are 2 abundant neutrophil serine proteases implicated in antimicrobial defense with overlapping and potentially redundant substrate specificity. Here, we unraveled a cooperative role for PR3 and NE in neutrophil activation and noninfectious inflammation in vivo, which we believe to be novel. Mice lacking both PR3 and NE demonstrated strongly diminished immune complex-mediated (IC-mediated) neutrophil infiltration in vivo as well as reduced activation of isolated neutrophils by ICs in vitro. In contrast, in mice lacking just NE, neutrophil recruitment to ICs was only marginally impaired. The defects in mice lacking both PR3 and NE were directly linked to the accumulation of antiinflammatory progranulin (PGRN). Both PR3 and NE cleaved PGRN in vitro and during neutrophil activation and inflammation in vivo. Local administration of recombinant PGRN potently inhibited neutrophilic inflammation in vivo, demonstrating that PGRN represents a crucial inflammation-suppressing mediator. We conclude that PR3 and NE enhance neutrophil-dependent inflammation by eliminating the local antiinflammatory activity of PGRN. Our results support the use of serine protease inhibitors as antiinflammatory agents.
Nature | 2015
Devon A. Lawson; Nirav R. Bhakta; Kai Kessenbrock; Karin D. Prummel; Ying Yu; Alicia Zhou; Henok Eyob; Sanjeev Balakrishnan; Chih-Yang Wang; Paul Yaswen; Andrei Goga; Zena Werb
Despite major advances in understanding the molecular and genetic basis of cancer, metastasis remains the cause of >90% of cancer-related mortality. Understanding metastasis initiation and progression is critical to developing new therapeutic strategies to treat and prevent metastatic disease. Prevailing theories hypothesize that metastases are seeded by rare tumour cells with unique properties, which may function like stem cells in their ability to initiate and propagate metastatic tumours. However, the identity of metastasis-initiating cells in human breast cancer remains elusive, and whether metastases are hierarchically organized is unknown. Here we show at the single-cell level that early stage metastatic cells possess a distinct stem-like gene expression signature. To identify and isolate metastatic cells from patient-derived xenograft models of human breast cancer, we developed a highly sensitive fluorescence-activated cell sorting (FACS)-based assay, which allowed us to enumerate metastatic cells in mouse peripheral tissues. We compared gene signatures in metastatic cells from tissues with low versus high metastatic burden. Metastatic cells from low-burden tissues were distinct owing to their increased expression of stem cell, epithelial-to-mesenchymal transition, pro-survival, and dormancy-associated genes. By contrast, metastatic cells from high-burden tissues were similar to primary tumour cells, which were more heterogeneous and expressed higher levels of luminal differentiation genes. Transplantation of stem-like metastatic cells from low-burden tissues showed that they have considerable tumour-initiating capacity, and can differentiate to produce luminal-like cancer cells. Progression to high metastatic burden was associated with increased proliferation and MYC expression, which could be attenuated by treatment with cyclin-dependent kinase (CDK) inhibitors. These findings support a hierarchical model for metastasis, in which metastases are initiated by stem-like cells that proliferate and differentiate to produce advanced metastatic disease.
Matrix Biology | 2015
Kai Kessenbrock; Chih-Yang Wang; Zena Werb
Since Gross and Lapiere firstly discovered matrix metalloproteinases (MMPs) as important collagenolytic enzymes during amphibian tadpole morphogenesis in 1962, this intriguing family of extracellular proteinases has been implicated in various processes of developmental biology. However, the pathogenic roles of MMPs in human diseases such as cancer have also garnered widespread attention. The most straightforward explanation for their role in cancer is that MMPs, through extracellular matrix degradation, pave the way for tumor cell invasion and metastasis. While this notion may be true for many circumstances, we now know that, depending on the context, MMPs may employ additional modes of functionality. Here, we will give an update on the function of MMPs in development and cancer, which may directly regulate signaling pathways that control tissue homeostasis and may even work in a non-proteolytic manner. These novel findings about the functionality of MMPs have important implications for MMP inhibitor design and may allow us to revisit MMPs as drug targets in the context of cancer and other diseases.
Clinical and Vaccine Immunology | 2006
Michael Mahler; Kai Kessenbrock; Magdalena Szmyrka; Yoshinari Takasaki; Ignacio García-De La Torre; Yehuda Shoenfeld; Falk Hiepe; Chen Shun-le; Carlos Alberto von Mühlen; Henning Locht; Peter Höpfl; Allan Wiik; Westley H. Reeves; Marvin J. Fritzler
ABSTRACT Autoantibodies to the ribosomal phosphoproteins (Rib-P) are a serological feature of patients with systemic lupus erythematosus (SLE). The reported prevalence of anti-Rib-P antibodies in SLE ranges from 10 to 40%, being higher in Asian patients. The variation in the observed frequency may be related to a number of factors but is dependent in large part on the test system used to detect the autoantibodies. An association of anti-Rib-P with central nervous system involvement and neuropsychiatric manifestations of SLE has been controversial. In the present international multicenter study, we evaluated the clinical accuracy of a new sensitive Rib-P-specific enzyme-linked immunosorbent assay based on recombinant Rib-P polypeptides. The results showed that 21.3% of 947 SLE patients, but only 0.7% of 1,113 control patients, had a positive test result (P < 0.0001). The sensitivity, specificity, positive and negative predictive values, and diagnostic efficiency were determined to be 21.3%, 99.3%, 95.6%, 62.2%, and 65.3%, respectively. When evaluated in the context of participating centers, the prevalence of anti-Rib-P antibodies was found in descending frequency, as follows: China (35%) > Poland (34%) > Japan (28%) > United States (26%) > Germany (Freiburg; 23.3%) > Denmark (20.5%) > Germany (Berlin; 19%) > Mexico (15.7%) > Israel (11.7%) > Brazil (10%) > Canada (8%). The substantial data from this study indicate that the prevalence of anti-Rib-P antibodies may not be restricted to the genetic background of the patients or to the detection system but may depend on regional practice differences and patient selection. We confirm previously reported associations of antiribosomal antibodies with clinical symptoms and serological findings. Remarkably, we found a lower occurrence of serositis in Rib-P-positive lupus patients.
Journal of Molecular Medicine | 2011
Kai Kessenbrock; Therese Dau; Dieter E. Jenne
Neutrophil granulocytes are important mediators of innate immunity, but also participate in the pathogenesis of (auto)inflammatory diseases. Neutrophils express a specific set of proteolytic enzymes, the neutrophil serine proteases (NSPs), which are stored in cytoplasmic granules and can be secreted into the extra- and pericellular space upon cellular activation. These NSPs, namely cathepsin G (CG), neutrophil elastase (NE), and proteinase 3 (PR3), have early been implicated in bacterial defense. However, NSPs also regulate the inflammatory response by specifically altering the function of cytokines and chemokines. For instance, PR3 and NE both inactivate the anti-inflammatory mediator progranulin, which may play a role in chronic inflammation. Here, we provide a concise update on NSPs as modulators of inflammation and discuss the biological and pathological significance of this novel function of NSPs. Mounting evidence support an important proinflammatory function for PR3, which may have been underestimated in the past.
Science Translational Medicine | 2016
Juwon Park; Robert W. Wysocki; Zohreh Amoozgar; Laura Maiorino; Miriam R. Fein; Julie M. Jorns; Anne F. Schott; Yumi Kinugasa-Katayama; Youngseok Lee; Nam Hee Won; Elizabeth S. Nakasone; Stephen Hearn; Victoria Küttner; Jing Qiu; Ana S. Almeida; Naiara Perurena; Kai Kessenbrock; Michael Goldberg; Mikala Egeblad
Treatment with DNase I–coated nanoparticles prevents metastasis by targeting neutrophil extracellular traps induced by cancer cells in a mouse model. Metastasis caught in a NET Neutrophil extracellular traps, or NETs, are DNA structures that are produced by neutrophils in response to infection and can promote the spread of cancer in the presence of infection. Park et al. discovered that even in the absence of infection, metastatic breast cancer cells can stimulate neutrophils to form NETs, which further support the spread of metastasis. The authors also demonstrated an approach to breaking this vicious cycle using nanoparticles coated with DNase I, an enzyme that breaks down DNA NETs. This treatment was effective in reducing lung metastases in mice, demonstrating the potential of NETs as a therapeutic target. Neutrophils, the most abundant type of leukocytes in blood, can form neutrophil extracellular traps (NETs). These are pathogen-trapping structures generated by expulsion of the neutrophil’s DNA with associated proteolytic enzymes. NETs produced by infection can promote cancer metastasis. We show that metastatic breast cancer cells can induce neutrophils to form metastasis-supporting NETs in the absence of infection. Using intravital imaging, we observed NET-like structures around metastatic 4T1 cancer cells that had reached the lungs of mice. We also found NETs in clinical samples of triple-negative human breast cancer. The formation of NETs stimulated the invasion and migration of breast cancer cells in vitro. Inhibiting NET formation or digesting NETs with deoxyribonuclease I (DNase I) blocked these processes. Treatment with NET-digesting, DNase I–coated nanoparticles markedly reduced lung metastases in mice. Our data suggest that induction of NETs by cancer cells is a previously unidentified metastasis-promoting tumor-host interaction and a potential therapeutic target.