Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dietrich Habs is active.

Publication


Featured researches published by Dietrich Habs.


Physical Review Letters | 2009

Radiation-Pressure Acceleration of Ion Beams Driven by Circularly Polarized Laser Pulses

A. Henig; S. Steinke; M. Schnürer; T. Sokollik; Rainer Hörlein; Daniel Kiefer; D. Jung; Jörg Schreiber; B. M. Hegelich; X. Q. Yan; J. Meyer-ter-Vehn; T. Tajima; P. V. Nickles; W. Sandner; Dietrich Habs

We present experimental studies on ion acceleration from ultrathin diamondlike carbon foils irradiated by ultrahigh contrast laser pulses of energy 0.7 J focused to peak intensities of 5x10(19) W/cm2. A reduction in electron heating is observed when the laser polarization is changed from linear to circular, leading to a pronounced peak in the fully ionized carbon spectrum at the optimum foil thickness of 5.3 nm. Two-dimensional particle-in-cell simulations reveal that those C6+ ions are for the first time dominantly accelerated in a phase-stable way by the laser radiation pressure.


Applied Physics Letters | 2000

Generating positrons with femtosecond-laser pulses

Christoph Gahn; George D. Tsakiris; Georg Pretzler; Klaus Witte; C Delfin; Claes-Göran Wahlström; Dietrich Habs

Utilizing a femtosecond table-top laser system, we have succeeded in converting via electron acceleration in a plasma channel, low-energy photons into antiparticles, namely positrons. The average intensity of this source of positrons is estimated to be equivalent to 2x10(8) Bq and it exhibits a very favorable scaling for higher laser intensities. The advent of positron production utilizing femtosecond laser pulses may be the forerunner to a table-top positron source appropriate for applications in material science, and fundamental physics research like positronium spectroscopy


Nature Physics | 2009

Laser -driven soft-X-ray undulator source

M. Fuchs; Raphael Weingartner; Antonia Popp; Zsuzsanna Major; Stefan Becker; Jens Osterhoff; Isabella Cortrie; Benno Zeitler; Rainer Hörlein; George D. Tsakiris; U. Schramm; Tom P. Rowlands-Rees; Simon M. Hooker; Dietrich Habs; Ferenc Krausz; Stefan Karsch; Florian Grüner

High-intensity X-ray sources such as synchrotrons and free-electron lasers need large particle accelerators to drive them. The demonstration of a synchrotron X-ray source that uses a laser-driven particle accelerator could widen the availability of intense X-rays for research in physics, materials science and biology. Synchrotrons and free-electron lasers are the most powerful sources of X-ray radiation. They constitute invaluable tools for a broad range of research1; however, their dependence on large-scale radiofrequency electron accelerators means that only a few of these sources exist worldwide. Laser-driven plasma-wave accelerators2,3,4,5,6,7,8,9,10 provide markedly increased accelerating fields and hence offer the potential to shrink the size and cost of these X-ray sources to the university-laboratory scale. Here, we demonstrate the generation of soft-X-ray undulator radiation with laser-plasma-accelerated electron beams. The well-collimated beams deliver soft-X-ray pulses with an expected pulse duration of ∼10 fs (inferred from plasma-accelerator physics). Our source draws on a 30-cm-long undulator11 and a 1.5-cm-long accelerator delivering stable electron beams10 with energies of ∼210 MeV. The spectrum of the generated undulator radiation typically consists of a main peak centred at a wavelength of ∼18 nm (fundamental), a second peak near ∼9 nm (second harmonic) and a high-energy cutoff at ∼7 nm. Magnetic quadrupole lenses11 ensure efficient electron-beam transport and demonstrate an enabling technology for reproducible generation of tunable undulator radiation. The source is scalable to shorter wavelengths by increasing the electron energy. Our results open the prospect of tunable, brilliant, ultrashort-pulsed X-ray sources for small-scale laboratories.


New Journal of Physics | 2007

GeV-scale electron acceleration in a gas-filled capillary discharge waveguide

Stefan Karsch; Jens Osterhoff; Antonia Popp; T. P. Rowlands-Rees; Zsuzsanna Major; M. Fuchs; Benjamin Marx; Rainer Hörlein; Karl Schmid; Laszlo Veisz; Stefan Becker; U. Schramm; Bernhard Hidding; Georg Pretzler; Dietrich Habs; Florian Grüner; Ferenc Krausz; Simon M. Hooker

We report experimental results on laser-driven electron acceleration with low divergence. The electron beam was generated by focussing 750 mJ, 42 fs laser pulses into a gas-filled capillary discharge waveguide at electron densities in the range between 10 18 and 10 19 cm 3 . Quasi-monoenergetic electron bunches with energies as high as 500 MeV have been detected, with features reaching up to 1 GeV, albeit with large shot-to-shot fluctuations. A more stable regime with higher bunch charge (20-45 pC) and less energy (200-300 MeV) could also be observed. The beam divergence and the pointing stability are around or below 1 mrad and 8 mrad, respectively. These findings are consistent with self-injection of electrons into a breaking plasma wave.


Reviews of Accelerator Science and Technology | 2009

Laser Acceleration of Ions for Radiation Therapy

T. Tajima; Dietrich Habs; Xueqing Yan

Ion beam therapy for cancer has proven to be a successful clinical approach, affording as good a cure as surgery and a higher quality of life. However, the ion beam therapy installation is large and expensive, limiting its availability for public benefit. One of the hurdles is to make the accelerator more compact on the basis of conventional technology. Laser acceleration of ions represents a rapidly developing young field. The prevailing acceleration mechanism (known as target normal sheath acceleration, TNSA), however, shows severe limitations in some key elements. We now witness that a new regime of coherent acceleration of ions by laser (CAIL) has been studied to overcome many of these problems and accelerate protons and carbon ions to high energies with higher efficiencies. Emerging scaling laws indicate possible realization of an ion therapy facility with compact, cost-efficient lasers. Furthermore, dense particle bunches may allow the use of much higher collective fields, reducing the size of beam ...


Laser and Particle Beams | 2005

Laser accelerated ions and electron transport in ultra-intense laser matter interaction

Markus Roth; E. Brambrink; P. Audebert; A. Blazevic; Rosemary Clarke; James A. Cobble; T. E. Cowan; Juan C. Fernandez; J. Fuchs; Matthias Geissel; Dietrich Habs; M. Hegelich; Stefan Karsch; K.W.D. Ledingham; D. Neely; H. Ruhl; T. Schlegel; J. Schreiber

Since their discovery, laser accelerated ion beams have been the subject of great interest. The ion beam peak power and beam emittance is unmatched by any conventionally accelerated ion beam. Due to the unique quality, a wealth of applications has been proposed, and the first experiments confirmed their prospects. Laser ion acceleration is strongly linked to the generation and transport of hot electrons by the interaction of ultra-intense laser light with matter. Comparing ion acceleration experiments at laser systems with different beam parameters and using targets of varying thickness, material and temperature, some insight on the underlying physics can be obtained. The paper will present experimental results obtained at different laser systems, first beam quality measurement on laser accelerated heavy ions, and ion beam source size measurements at different laser parameters. Using structured targets, we compare information obtained from micro patterned ion beams about the accelerating electron sheath, and the influence of magnetic fields on the electron transport inside conducting targets.


Physics of Plasmas | 2002

Generation of MeV electrons and positrons with femtosecond pulses from a table-top laser system

C. Gahn; George D. Tsakiris; Georg Pretzler; Klaus Witte; P Thirolf; Dietrich Habs; C Delfin; Claes-Göran Wahlström

In experiments, the feasibility was demonstrated of generating multi-MeV electrons in a form of a collimated beam utilizing a table-top laser system delivering 200 fs pulses with PL=1.2 TW and 10 Hz capability. The method uses the process of relativistic self-channeling in a high-density gas jet producing electron densities in the range of 3×1019–6×1020 cm−3. In a thorough investigation, angularly resolved and absolutely calibrated electron spectra were measured and their dependence on the plasma density, laser intensity, and gas medium was studied. For the optimum electron density of ne=2×1020 cm−3 the effective temperature of the electron energy distribution and the channel length exhibit a maximum of 5 MeV and 400 μm respectively. The laser-energyto-MeV-electron efficiency is estimated to be 5%. In a second step, utilizing the multi-MeV electron beam anti-particles, namely positrons, were successfully generated in a 2 mm Pb converter. The average intensity of this new source of positrons is estimated t...


New Journal of Physics | 2013

Efficient carbon ion beam generation from laser-driven volume acceleration

D. Jung; L. Yin; B. J. Albright; D. C. Gautier; S. Letzring; B. Dromey; M. Yeung; Rainer Hörlein; R. C. Shah; S. Palaniyappan; K. Allinger; Jörg Schreiber; K. J. Bowers; H-C Wu; J. C. Fernandez; Dietrich Habs; B. M. Hegelich

Experimental data on laser-driven carbon C6+ ion acceleration with a peak intensity of 5???1020?W?cm?2 are presented and compared for opaque target normal sheath acceleration (TNSA) and relativistically transparent laser?plasma interactions. Particle numbers, peak ion energy and conversion efficiency have been investigated for target thicknesses from 50?nm to 25??m using unprecedented full spectral beam profile line-out measurements made using a novel high-resolution ion wide-angle spectrometer. For thicknesses of about 200?nm, particle numbers and peak energy increase to 5???1011 carbon C6+ particles between 33 and 700?MeV (60?MeV?u?1), which is a factor of five higher in particle number than that observed for targets with micron thickness. For 200?nm thick targets, we find that the peak conversion efficiency is 6% and that up to 55% of the target under the laser focal spot is accelerated to energies above 33?MeV. This contrasts with the results for targets with micron thickness, where surface acceleration with TNSA is dominant. The experimental findings are consistent with two-dimensional particle-in-cell simulations.


Physics of Plasmas | 2005

Spectral properties of laser-accelerated mid-Z MeV/u ion beams

B. M. Hegelich; B. J. Albright; P. Audebert; A. Blazevic; E. Brambrink; J. A. Cobble; T. Cowan; J. Fuchs; J. C. Gauthier; C. Gautier; Matthias Geissel; Dietrich Habs; R. P. Johnson; Stefan Karsch; Andreas Kemp; S. Letzring; Markus Roth; U. Schramm; Jörg Schreiber; Klaus Witte; Juan C. Fernandez

Collimated jets of beryllium, carbon, oxygen, fluorine, and palladium ions with >1MeV∕nucleon energies are observed from the rear surface of thin foils irradiated with laser intensities of up to 5×1019W∕cm2. The normally dominant proton acceleration is suppressed when the target is subjected to Joule heating to remove hydrogen-bearing contaminant. This inhibits screening effects and permits effective energy transfer to and acceleration of heavier ion species. The influence of remnant protons on the spectral shape of the next highest charge-to-mass ratio species is shown. Particle-in-cell simulations confirming the experimental findings are presented.


Review of Scientific Instruments | 2011

Development of a high resolution and high dispersion Thomson parabola

D. Jung; Rainer Hörlein; Daniel Kiefer; S. Letzring; D. C. Gautier; U. Schramm; C. Hübsch; R. Öhm; B. J. Albright; Juan C. Fernandez; Dietrich Habs; B. M. Hegelich

Here, we report on the development of a novel high resolution and high dispersion Thomson parabola for simultaneously resolving protons and low-Z ions of more than 100 MeV/nucleon necessary to explore novel laser ion acceleration schemes. High electric and magnetic fields enable energy resolutions of ΔE∕E < 5% at 100 MeV/nucleon and impede premature merging of different ion species at low energies on the detector plane. First results from laser driven ion acceleration experiments performed at the Trident Laser Facility demonstrate high resolution and superior species and charge state separation of this novel Thomson parabola for ion energies of more than 30 MeV/nucleon.

Collaboration


Dive into the Dietrich Habs's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

U. Schramm

Helmholtz-Zentrum Dresden-Rossendorf

View shared research outputs
Top Co-Authors

Avatar

T. Tajima

University of California

View shared research outputs
Top Co-Authors

Avatar

Jörg Schreiber

Ludwig Maximilian University of Munich

View shared research outputs
Top Co-Authors

Avatar

D. Jung

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge