Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dmitriy Niyazov is active.

Publication


Featured researches published by Dmitriy Niyazov.


Nature Genetics | 2011

A copy number variation morbidity map of developmental delay

Gregory M. Cooper; Bradley P. Coe; Santhosh Girirajan; Jill A. Rosenfeld; Tiffany H. Vu; Carl Baker; Charles A. Williams; Heather J. Stalker; Rizwan Hamid; Vickie Hannig; Hoda Abdel-Hamid; Patricia I. Bader; Elizabeth McCracken; Dmitriy Niyazov; Kathleen A. Leppig; Heidi Thiese; Marybeth Hummel; Nora Alexander; Jerome L. Gorski; Jennifer Kussmann; Vandana Shashi; Krys Johnson; Catherine Rehder; Blake C. Ballif; Lisa G. Shaffer; Evan E. Eichler

To understand the genetic heterogeneity underlying developmental delay, we compared copy number variants (CNVs) in 15,767 children with intellectual disability and various congenital defects (cases) to CNVs in 8,329 unaffected adult controls. We estimate that ∼14.2% of disease in these children is caused by CNVs >400 kb. We observed a greater enrichment of CNVs in individuals with craniofacial anomalies and cardiovascular defects compared to those with epilepsy or autism. We identified 59 pathogenic CNVs, including 14 new or previously weakly supported candidates, refined the critical interval for several genomic disorders, such as the 17q21.31 microdeletion syndrome, and identified 940 candidate dosage-sensitive genes. We also developed methods to opportunistically discover small, disruptive CNVs within the large and growing diagnostic array datasets. This evolving CNV morbidity map, combined with exome and genome sequencing, will be critical for deciphering the genetic basis of developmental delay, intellectual disability and autism spectrum disorders.


The New England Journal of Medicine | 2012

Phenotypic Heterogeneity of Genomic Disorders and Rare Copy-Number Variants

Santhosh Girirajan; Jill A. Rosenfeld; Bradley P. Coe; Sumit Parikh; Neil R. Friedman; Amy Goldstein; Robyn A. Filipink; Juliann S. McConnell; Brad Angle; Wendy S. Meschino; Marjan M. Nezarati; Alexander Asamoah; Kelly E. Jackson; Gordon C. Gowans; Judith Martin; Erin P. Carmany; David W. Stockton; Rhonda E. Schnur; Lynette S. Penney; Donna M. Martin; Salmo Raskin; Kathleen A. Leppig; Heidi Thiese; Rosemarie Smith; Erika Aberg; Dmitriy Niyazov; Luis F. Escobar; Dima El-Khechen; Kisha Johnson; Robert Roger Lebel

BACKGROUND Some copy-number variants are associated with genomic disorders with extreme phenotypic heterogeneity. The cause of this variation is unknown, which presents challenges in genetic diagnosis, counseling, and management. METHODS We analyzed the genomes of 2312 children known to carry a copy-number variant associated with intellectual disability and congenital abnormalities, using array comparative genomic hybridization. RESULTS Among the affected children, 10.1% carried a second large copy-number variant in addition to the primary genetic lesion. We identified seven genomic disorders, each defined by a specific copy-number variant, in which the affected children were more likely to carry multiple copy-number variants than were controls. We found that syndromic disorders could be distinguished from those with extreme phenotypic heterogeneity on the basis of the total number of copy-number variants and whether the variants are inherited or de novo. Children who carried two large copy-number variants of unknown clinical significance were eight times as likely to have developmental delay as were controls (odds ratio, 8.16; 95% confidence interval, 5.33 to 13.07; P=2.11×10(-38)). Among affected children, inherited copy-number variants tended to co-occur with a second-site large copy-number variant (Spearman correlation coefficient, 0.66; P<0.001). Boys were more likely than girls to have disorders of phenotypic heterogeneity (P<0.001), and mothers were more likely than fathers to transmit second-site copy-number variants to their offspring (P=0.02). CONCLUSIONS Multiple, large copy-number variants, including those of unknown pathogenic significance, compound to result in a severe clinical presentation, and secondary copy-number variants are preferentially transmitted from maternal carriers. (Funded by the Simons Foundation Autism Research Initiative and the National Institutes of Health.).


Human Genetics | 2012

High-resolution array CGH defines critical regions and candidate genes for microcephaly, abnormalities of the corpus callosum, and seizure phenotypes in patients with microdeletions of 1q43q44

Blake C. Ballif; Jill A. Rosenfeld; Ryan Traylor; Aaron Theisen; Patricia I. Bader; Roger L. Ladda; Susan Sell; Michelle Steinraths; Urvashi Surti; Marianne McGuire; Shelley Williams; Sandra A. Farrell; James J. Filiano; Rhonda E. Schnur; Lauren B. Coffey; Raymond C. Tervo; Tracy Stroud; Michael Marble; Michael L. Netzloff; Kristen Hanson; Arthur S. Aylsworth; John S. Bamforth; Deepti Babu; Dmitriy Niyazov; J. Britt Ravnan; Roger A. Schultz; Allen N. Lamb; Beth S. Torchia; Bassem A. Bejjani; Lisa G. Shaffer

Microdeletions of 1q43q44 result in a recognizable clinical disorder characterized by moderate to severe intellectual disability (ID) with limited or no expressive speech, characteristic facial features, hand and foot anomalies, microcephaly (MIC), abnormalities (agenesis/hypogenesis) of the corpus callosum (ACC), and seizures (SZR). Critical regions have been proposed for some of the more prominent features of this disorder such as MIC and ACC, yet conflicting data have prevented precise determination of the causative genes. In this study, the largest of pure interstitial and terminal deletions of 1q43q44 to date, we characterized 22 individuals by high-resolution oligonucleotide microarray-based comparative genomic hybridization. We propose critical regions and candidate genes for the MIC, ACC, and SZR phenotypes associated with this microdeletion syndrome. Three cases with MIC had small overlapping or intragenic deletions of AKT3, an isoform of the protein kinase B family. The deletion of only AKT3 in two cases implicates haploinsufficiency of this gene in the MIC phenotype. Likewise, based on the smallest region of overlap among the affected individuals, we suggest a critical region for ACC that contains ZNF238, a transcriptional and chromatin regulator highly expressed in the developing and adult brain. Finally, we describe a critical region for the SZR phenotype which contains three genes (FAM36A, C1ORF199, and HNRNPU). Although ~90% of cases in this study and in the literature fit these proposed models, the existence of phenotypic variability suggests other mechanisms such as variable expressivity, incomplete penetrance, position effects, or multigenic factors could account for additional complexity in some cases.


American Journal of Human Genetics | 2015

Mutations in SPATA5 Are Associated with Microcephaly, Intellectual Disability, Seizures, and Hearing Loss

Akemi J. Tanaka; Megan T. Cho; Francisca Millan; Jane Juusola; Kyle Retterer; Charuta Joshi; Dmitriy Niyazov; Adolfo Garnica; Edward Gratz; Matthew A. Deardorff; Alisha Wilkins; Xilma R. Ortiz-Gonzalez; Katherine D. Mathews; Karin Panzer; Eva H. Brilstra; Koen L.I. van Gassen; Catharina M L Volker-Touw; Ellen van Binsbergen; Nara Sobreira; Ada Hamosh; Dianalee McKnight; Kristin G. Monaghan; Wendy K. Chung

Using whole-exome sequencing, we have identified in ten families 14 individuals with microcephaly, developmental delay, intellectual disability, hypotonia, spasticity, seizures, sensorineural hearing loss, cortical visual impairment, and rare autosomal-recessive predicted pathogenic variants in spermatogenesis-associated protein 5 (SPATA5). SPATA5 encodes a ubiquitously expressed member of the ATPase associated with diverse activities (AAA) protein family and is involved in mitochondrial morphogenesis during early spermatogenesis. It might also play a role in post-translational modification during cell differentiation in neuronal development. Mutations in SPATA5 might affect brain development and function, resulting in microcephaly, developmental delay, and intellectual disability.


American Journal of Medical Genetics Part A | 2013

Investigation of NRXN1 deletions: clinical and molecular characterization.

Mindy Preston Dabell; Jill A. Rosenfeld; Patricia I. Bader; Luis F. Escobar; Dima El-Khechen; Stephanie E. Vallee; Mary Beth Dinulos; Cynthia J. Curry; Jamie Fisher; Raymond C. Tervo; Mark C. Hannibal; Kiana Siefkas; Philip R. Wyatt; Lauren Hughes; Rosemarie Smith; Sara Ellingwood; Yves Lacassie; Tracy Stroud; Sandra A. Farrell; Pedro A. Sanchez-Lara; Linda M. Randolph; Dmitriy Niyazov; Cathy A. Stevens; Cheri Schoonveld; David Skidmore; Sara MacKay; Judith H. Miles; Manikum Moodley; Adam Huillet; Nicholas J. Neill

Deletions at 2p16.3 involving exons of NRXN1 are associated with susceptibility for autism and schizophrenia, and similar deletions have been identified in individuals with developmental delay and dysmorphic features. We have identified 34 probands with exonic NRXN1 deletions following referral for clinical microarray‐based comparative genomic hybridization. To more firmly establish the full phenotypic spectrum associated with exonic NRXN1 deletions, we report the clinical features of 27 individuals with NRXN1 deletions, who represent 23 of these 34 families. The frequency of exonic NRXN1 deletions among our postnatally diagnosed patients (0.11%) is significantly higher than the frequency among reported controls (0.02%; P = 6.08 × 10−7), supporting a role for these deletions in the development of abnormal phenotypes. Generally, most individuals with NRXN1 exonic deletions have developmental delay (particularly speech), abnormal behaviors, and mild dysmorphic features. In our cohort, autism spectrum disorders were diagnosed in 43% (10/23), and 16% (4/25) had epilepsy. The presence of NRXN1 deletions in normal parents and siblings suggests reduced penetrance and/or variable expressivity, which may be influenced by genetic, environmental, and/or stochastic factors. The pathogenicity of these deletions may also be affected by the location of the deletion within the gene. Counseling should appropriately represent this spectrum of possibilities when discussing recurrence risks or expectations for a child found to have a deletion in NRXN1.


American Journal of Human Genetics | 2015

Mutations Impairing GSK3-Mediated MAF Phosphorylation Cause Cataract, Deafness, Intellectual Disability, Seizures, and a Down Syndrome-like Facies

Marcello Niceta; Emilia Stellacci; Karen W. Gripp; Giuseppe Zampino; Maria Kousi; Massimiliano Anselmi; Alice Traversa; Andrea Ciolfi; Deborah L. Stabley; Alessandro Bruselles; Viviana Caputo; Serena Cecchetti; Sabrina Prudente; Maria Teresa Fiorenza; Carla Boitani; Nicole Philip; Dmitriy Niyazov; Chiara Leoni; Takaya Nakane; Kim M. Keppler-Noreuil; Stephen R. Braddock; Gabriele Gillessen-Kaesbach; Antonio Palleschi; Philippe M. Campeau; Brendan Lee; Celio Pouponnot; Lorenzo Stella; Gianfranco Bocchinfuso; Nicholas Katsanis; Katia Sol-Church

Transcription factors operate in developmental processes to mediate inductive events and cell competence, and perturbation of their function or regulation can dramatically affect morphogenesis, organogenesis, and growth. We report that a narrow spectrum of amino-acid substitutions within the transactivation domain of the v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog (MAF), a leucine zipper-containing transcription factor of the AP1 superfamily, profoundly affect development. Seven different de novo missense mutations involving conserved residues of the four GSK3 phosphorylation motifs were identified in eight unrelated individuals. The distinctive clinical phenotype, for which we propose the eponym Aymé-Gripp syndrome, is not limited to lens and eye defects as previously reported for MAF/Maf loss of function but includes sensorineural deafness, intellectual disability, seizures, brachycephaly, distinctive flat facial appearance, skeletal anomalies, mammary gland hypoplasia, and reduced growth. Disease-causing mutations were demonstrated to impair proper MAF phosphorylation, ubiquitination and proteasomal degradation, perturbed gene expression in primary skin fibroblasts, and induced neurodevelopmental defects in an in vivo model. Our findings nosologically and clinically delineate a previously poorly understood recognizable multisystem disorder, provide evidence for MAF governing a wider range of developmental programs than previously appreciated, and describe a novel instance of protein dosage effect severely perturbing development.


Mitochondrion | 2014

Practice patterns of mitochondrial disease physicians in North America. Part 1: diagnostic and clinical challenges.

Sumit Parikh; Amy Goldstein; Mary Kay Koenig; Fernando Scaglia; Gregory M. Enns; Russell P. Saneto; Irina Anselm; Abigail Collins; Bruce H. Cohen; Suzanne D. DeBrosse; David Dimmock; Marni J. Falk; Jaya Ganesh; Carol L. Greene; Andrea Gropman; Richard H. Haas; Stephen G. Kahler; John Kamholz; Fran Kendall; Mark S. Korson; Andre Mattman; Margherita Milone; Dmitriy Niyazov; Phillip L. Pearl; Tyler Reimschisel; Ramona Salvarinova-Zivkovic; Katherine B. Sims; Mark A. Tarnopolsky; Chang Yong Tsao; Johan L. K. Van Hove

Mitochondrial medicine is a young subspecialty. Clinicians have a limited evidence base on which to formulate clinical decisions regarding diagnosis, treatment and patient management. Mitochondrial medicine specialists have cobbled together an informal set of rules and paradigms for preventive care and management based in part on anecdotal experience. The Mitochondrial Medicine Society (MMS) assessed the current state of clinical practice from diagnosis, to preventive care and treatment, as provided by various mitochondrial disease specialists in North America. We hope that by obtaining this information we can begin moving towards formulating a set of consensus criteria and establishing standards of care.


American Journal of Medical Genetics Part A | 2011

Distinctive Phenotype in 9 Patients with Deletion of Chromosome 1q24-q25

Deepika D’Cunha Burkardt; Jill A. Rosenfeld; Maria L. Helgeson; Brad Angle; Valerie Banks; Wendy Smith; Karen W. Gripp; Jessica Moline; Rocio Moran; Dmitriy Niyazov; Cathy A. Stevens; Elaine H. Zackai; Robert Roger Lebel; Douglas G. Ashley; Nancy Kramer; Ralph S. Lachman; John M. Graham

Reports of individuals with deletions of 1q24 → q25 share common features of prenatal onset growth deficiency, microcephaly, small hands and feet, dysmorphic face and severe cognitive deficits. We report nine individuals with 1q24q25 deletions, who show distinctive features of a clinically recognizable 1q24q25 microdeletion syndrome: prenatal‐onset microcephaly and proportionate growth deficiency, severe cognitive disability, small hands and feet with distinctive brachydactyly, single transverse palmar flexion creases, fifth finger clinodactyly and distinctive facial features: upper eyelid fullness, small ears, short nose with bulbous nasal tip, tented upper lip, and micrognathia. Radiographs demonstrate disharmonic osseous maturation with markedly delayed bone age. Occasional features include cleft lip and/or palate, cryptorchidism, brain and spinal cord defects, and seizures. Using oligonucleotide‐based array comparative genomic hybridization, we defined the critical deletion region as 1.9 Mb at 1q24.3q25.1 (chr1: 170,135,865–172,099,327, hg18 coordinates), containing 13 genes and including CENPL, which encodes centromeric protein L, a protein essential for proper kinetochore function and mitotic progression. The growth deficiency in this syndrome is similar to what is seen in other types of primordial short stature with microcephaly, such as Majewski osteodysplastic primordial dwarfism, type II (MOPD2) and Seckel syndrome, which result from loss‐of‐function mutations in genes coding for centrosomal proteins. DNM3 is also in the deleted region and expressed in the brain, where it participates in the Shank–Homer complex and increases synaptic strength. Therefore, DNM3 is a candidate for the cognitive disability, and CENPL is a candidate for growth deficiency in this 1q24q25 microdeletion syndrome.


Mitochondrion | 2013

Practice patterns of mitochondrial disease physicians in North America. Part 2: treatment, care and management.

Sumit Parikh; Amy Goldstein; Mary Kay Koenig; Fernando Scaglia; Gregory M. Enns; Russell P. Saneto; Irina Anselm; Abigail Collins; Bruce H. Cohen; Suzanne D. DeBrosse; David Dimmock; Marni J. Falk; Jaya Ganesh; Carol Greene; Andrea Gropman; Richard H. Haas; Stephen G. Kahler; John Kamholz; Fran Kendall; Mark S. Korson; Andre Mattman; Margherita Milone; Dmitriy Niyazov; Phillip L. Pearl; Tyler Reimschisel; Ramona Salvarinova-Zivkovic; Katherine B. Sims; Mark A. Tarnopolsky; Chang-Yong Tsao; Johan L. K. Van Hove

Mitochondrial medicine is a young subspecialty. Clinicians have limited evidence-based guidelines on which to formulate clinical decisions regarding diagnosis, treatment and management for patients with mitochondrial disorders. Mitochondrial medicine specialists have cobbled together an informal set of rules and paradigms for preventive care and management based in part on anecdotal experience. The Mitochondrial Medicine Society (MMS) assessed the current state of clinical practice including diagnosis, preventive care and treatment, as provided by various mitochondrial disease providers in North America. In this second of two reports, we present data related to clinical practice that highlight the challenges clinicians face in the routine care of patients with established mitochondrial disease. Concerning variability in treatment and preventative care approaches were noted. We hope that sharing this information will be a first step toward formulating a set of consensus criteria and establishing standards of care.


American Journal of Medical Genetics Part A | 2013

Familial ebstein anomaly, left ventricular hypertrabeculation, and ventricular septal defect associated with a MYH7 mutation

Audra L. Bettinelli; Theodorus J. Mulder; Birgit Funke; Katherine Lafferty; Sherri Longo; Dmitriy Niyazov

Ebstein anomaly is a rare congenital heart defect that most often occurs sporadically within a kindred. Familial cases, although reported, are uncommon. At this time, the genetic etiology of Ebstein anomaly is not fully elucidated. Here, we describe clinical and molecular investigations of a rare case of familial Ebstein anomaly in association with a likely pathogenic mutation of the MYH7 gene. The severity of presentation varies, and Ebstein anomaly can be observed in association with such other heart defects as ventricular septal defect and left ventricular (LV) hypertrabeculation, as seen in our family of study. In our family of study, the 31‐year‐old father and four of his children have been diagnosed with Ebstein anomaly. Genetic testing revealed that the father was heterozygous for the Glu1220del variant detected in exon 27 of the MYH7 gene. The MYH7 gene encodes the β‐myosin heavy chain and is expressed in cardiac muscle. DNA sequencing of three of his affected children confirmed that they carried the same variant while the fourth affected child was not available for testing. This is the first report of familial Ebstein anomaly associated with the Glu1220del mutation of the MYH7 gene. The mutation segregates with disease in a family with autosomal dominant transmission of congenital heart defects including Ebstein anomaly and other associated cardiovascular defects including LV hypertrabeculation and ventricular septal defect.

Collaboration


Dive into the Dmitriy Niyazov's collaboration.

Top Co-Authors

Avatar

Jill A. Rosenfeld

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy Goldstein

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Patricia I. Bader

Memorial Hospital of South Bend

View shared research outputs
Top Co-Authors

Avatar

Bradley P. Coe

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge