Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dominique Vidaud is active.

Publication


Featured researches published by Dominique Vidaud.


Human Mutation | 2010

NF1 microdeletions in neurofibromatosis type 1: from genotype to phenotype

Eric Pasmant; Audrey Sabbagh; Gillian Spurlock; Ingrid Laurendeau; Elisa Grillo; Marie-José Hamel; Ludovic Martin; S. Barbarot; Bruno Leheup; Diana Rodriguez; Didier Lacombe; Hélène Dollfus; Laurent Pasquier; Bertrand Isidor; Salah Ferkal; Jean Soulier; Marc Sanson; Anne Dieux-Coeslier; Ivan Bièche; Béatrice Parfait; Michel Vidaud; P. Wolkenstein; Meena Upadhyaya; Dominique Vidaud

In 5‐10% of patients, neurofibromatosis type 1 (NF1) results from microdeletions that encompass the entire NF1 gene and a variable number of flanking genes. Two recurrent microdeletion types are found in most cases, with microdeletion breakpoints located in paralogous regions flanking NF1 (proximal NF1‐REP‐a and distal NF1‐REP–c for the 1.4 Mb type‐1 microdeletion, and SUZ12 and SUZ12P for the 1.2 Mb type‐2 microdeletion). A more severe phenotype is usually associated with NF1 microdeletion patients than in those with intragenic mutations. We characterized NF1 microdeletions in 70 unrelated NF1 microdeleted patients using a high‐resolution NF1 custom array comparative genomic hybridization (CGH). Genotype‐phenotype correlations were studied in 58 of these microdeletion patients and compared to 389 patients with intragenic truncating NF1 mutations and phenotyped in the same standardized way. Our results confirmed in an unbiased manner the existence of a contiguous gene syndrome with a significantly higher incidence of learning disabilities and facial dysmorphism in microdeleted patients compared to patients with intragenic NF1 mutations. Microdeleted NF1 patients also showed a trend toward significance for childhood overgrowth. High‐resolution array‐CGH identified a new recurrent ∼1.0 Mb microdeletion type, designated as type‐3, with breakpoints in the paralogous regions middle NF1‐REP‐b and distal NF1‐REP–c.


Human Molecular Genetics | 2012

Somatic NF1 Inactivation is a Frequent Event in Sporadic Pheochromocytoma

Nelly Burnichon; Alexandre Buffet; Béatrice Parfait; Eric Letouzé; Ingrid Laurendeau; Céline Loriot; Eric Pasmant; Nasséra Abermil; Laurence Valeyrie-Allanore; Jérôme Bertherat; Laurence Amar; Dominique Vidaud; Judith Favier; Anne-Paule Gimenez-Roqueplo

Germline mutations in the RET, SDHA, SDHAF2, SDHB, SDHC, SDHD, MAX, TMEM127, NF1 or VHL genes are identified in about 30% of patients with pheochromocytoma or paraganglioma and somatic mutations in RET, VHL or MAX genes are reported in 17% of sporadic tumors. In the present study, using mutation screening of the NF1 gene, mapping of chromosome aberrations by single nucleotide polymorphism (SNP) array, microarray-based expression profiling and immunohistochemistry (IHC), we addressed the implication of NF1 somatic alterations in pheochromocytomas and paragangliomas. We studied 53 sporadic tumors, selected because of their classification with RET/NF1/TMEM127-related tumors by genome wide expression studies, as well as a second set of 11 independent tumors selected on their low individual levels of NF1 expression evaluated by microarray. Direct sequencing of the NF1 gene in tumor DNA identified the presence of an inactivating NF1 somatic mutation in 41% (25/61) of analyzed sporadic tumors, associated with loss of the wild-type allele in 84% (21/25) of cases. Gene expression signature of NF1-related tumors highlighted the downregulation of NF1 and the major overexpression of SOX9. Among the second set of 11 tumors, two sporadic tumors carried somatic mutations in NF1 as well as in another susceptibility gene. These new findings suggest that NF1 loss of function is a frequent event in the tumorigenesis of sporadic pheochromocytoma and strengthen the new concept of molecular-based targeted therapy for pheochromocytoma or paraganglioma.


Human Molecular Genetics | 2009

Unravelling the genetic basis of variable clinical expression in neurofibromatosis 1

Audrey Sabbagh; Eric Pasmant; Ingrid Laurendeau; Béatrice Parfait; S. Barbarot; Bernard Guillot; Patrick Combemale; Salah Ferkal; Michel Vidaud; Patrick Aubourg; Dominique Vidaud; P. Wolkenstein

Neurofibromatosis type 1 (NF1) is a common autosomal dominant disorder which displays considerable inter- and intra-familial variability in phenotypic expression. To evaluate the genetic component of variable expressivity in NF1, we examined the phenotypic correlations between affected relatives in 750 NF1 patients from 275 multiplex families collected through the NF-France Network. Twelve NF1-related clinical features, including five quantitative traits (number of café-au-lait spots of small size and of large size, and number of cutaneous, subcutaneous and plexiform neurofibromas) and seven binary ones, were scored. All clinical features studied, with the exception of neoplasms, showed significant familial aggregation after adjusting for age and sex. For most of them, patterns of familial correlations indicated a strong genetic component with no apparent influence of the constitutional NF1 mutation. Heritability estimates of the five quantitative traits ranged from 0.26 to 0.62. Moreover, we investigated for the first time the role of the normal NF1 allele in the variable expression of NF1 through a family-based association study. Nine tag SNPs in NF1 were genotyped in 1132 individuals from 313 NF1 families. No significant deviations of transmission of any of the NF1 variants to affected offspring was found for any of the 12 clinical features examined, based on single marker or haplotype analysis. Taken together, our results provided evidence that genetic modifiers, unlinked to the NF1 locus, contribute to the variable expressivity of the disease.


Journal of Medical Genetics | 2012

Neurofibromatosis type 1: from genotype to phenotype

Eric Pasmant; Michel Vidaud; Dominique Vidaud; P. Wolkenstein

Although neurofibromatosis 1 (NF1) is a common Mendelian disorder with autosomal-dominant inheritance, its expression is highly variable and unpredictable. Many NF1 patients have been genotyped but few allele-phenotype correlations have been identified. NF1 genotype-phenotype correlations are difficult to identify because of the complexity of the NF1 phenotype, its strong age dependency, the relatedness of many clinical features and the huge heterogeneity of pathogenic NF1 mutations. Some NF1 patients with a given NF1 mutation may develop very severe disease while others with the same mutation have only mild symptoms. This phenotypic variability may be due to both modifier genes and environmental factors. Recent targeted strategies have identified several interesting candidate modifier genes.


Human Mutation | 2013

NF1 Molecular Characterization and Neurofibromatosis Type I Genotype–Phenotype Correlation: The French Experience

Audrey Sabbagh; Eric Pasmant; Apolline Imbard; Armelle Luscan; Magali Soares; Hélène Blanché; Ingrid Laurendeau; Salah Ferkal; Michel Vidaud; Stéphane Pinson; Christine Bellanné-Chantelot; Dominique Vidaud; Béatrice Parfait; P. Wolkenstein

Neurofibromatosis type 1 (NF1) affects about one in 3,500 people in all ethnic groups. Most NF1 patients have private loss‐of‐function mutations scattered along the NF1 gene. Here, we present an original NF1 investigation strategy and report a comprehensive mutation analysis of 565 unrelated patients from the NF‐France Network. A NF1 mutation was identified in 546 of the 565 patients, giving a mutation detection rate of 97%. The combined cDNA/DNA approach showed that a significant proportion of NF1 missense mutations (30%) were deleterious by affecting pre‐mRNA splicing. Multiplex ligation‐dependent probe amplification allowed the identification of restricted rearrangements that would have been missed if only sequencing or microsatellite analysis had been performed. In four unrelated families, we identified two distinct NF1 mutations within the same family. This fortuitous association points out the need to perform an exhaustive NF1 screening in the case of molecular discordant‐related patients. A genotype–phenotype study was performed in patients harboring a truncating (N = 368), in‐frame splicing (N = 36), or missense (N = 35) mutation. The association analysis of these mutation types with 12 common NF1 clinical features confirmed a weak contribution of the allelic heterogeneity of the NF1 mutation to the NF1 variable expressivity.


Gastroenterology | 2015

Diagnosis of Constitutional Mismatch Repair-Deficiency Syndrome Based on Microsatellite Instability and Lymphocyte Tolerance to Methylating Agents

Sahra Bodo; Chrystelle Colas; Olivier Buhard; Ada Collura; Julie Tinat; Noémie Lavoine; Agathe Guilloux; Alexandra Chalastanis; Philippe Lafitte; Florence Coulet; Marie-Pierre Buisine; Denisa Ilencikova; Clara Ruiz-Ponte; Miriam Kinzel; Sophie Grandjouan; Hilde Brems; Sophie Lejeune; Hélène Blanché; Qing Wang; Olivier Caron; Odile Cabaret; Magali Svrcek; Dominique Vidaud; Béatrice Parfait; Alain Verloes; Ulrich J. Knappe; Florent Soubrier; Isabelle Mortemousque; Alexander Leis; Jessie Auclair-Perrossier

BACKGROUND & AIMS Patients with bi-allelic germline mutations in mismatch repair (MMR) genes (MLH1, MSH2, MSH6, or PMS2) develop a rare but severe variant of Lynch syndrome called constitutional MMR deficiency (CMMRD). This syndrome is characterized by early-onset colorectal cancers, lymphomas or leukemias, and brain tumors. There is no satisfactory method for diagnosis of CMMRD because screens for mutations in MMR genes are noninformative for 30% of patients. MMR-deficient cancer cells are resistant to genotoxic agents and have microsatellite instability (MSI), due to accumulation of errors in repetitive DNA sequences. We investigated whether these features could be used to identify patients with CMMRD. METHODS We examined MSI by PCR analysis and tolerance to methylating or thiopurine agents (functional characteristics of MMR-deficient tumor cells) in lymphoblastoid cells (LCs) from 3 patients with CMMRD and 5 individuals with MMR-proficient LCs (controls). Using these assays, we defined experimental parameters that allowed discrimination of a series of 14 patients with CMMRD from 52 controls (training set). We then used the same parameters to assess 23 patients with clinical but not genetic features of CMMRD. RESULTS In the training set, we identified parameters, based on MSI and LC tolerance to methylation, that detected patients with CMMRD vs controls with 100% sensitivity and 100% specificity. Among 23 patients suspected of having CMMRD, 6 had MSI and LC tolerance to methylation (CMMRD highly probable), 15 had neither MSI nor LC tolerance to methylation (unlikely to have CMMRD), and 2 were considered doubtful for CMMRD based on having only 1 of the 2 features. CONCLUSION The presence of MSI and tolerance to methylation in LCs identified patients with CMMRD with 100% sensitivity and specificity. These features could be used in diagnosis of patients.


The Journal of Molecular Diagnostics | 2009

Detection and Characterization of NF1 Microdeletions by Custom High Resolution Array CGH

Eric Pasmant; Audrey Sabbagh; Julien Masliah-Planchon; Véronique Haddad; Marie-José Hamel; Ingrid Laurendeau; Jean Soulier; Béatrice Parfait; Pierre Wolkenstein; Ivan Bièche; Michel Vidaud; Dominique Vidaud

In 5% to 10% of cases, neurofibromatosis type 1 is caused by microdeletions scattered across the entire NF1 gene and various neighboring genes. The phenotype appears to be more severe in patients with NF1 microdeletions than in patients with NF1 single point mutations. We have developed a new method for detecting and characterizing NF1 microdeletions based on a custom high-resolution oligonucleotide array comparative genomic hybridization by using the custom 8x15K Agilent array format. The array comprised a total of 14,207 oligonucleotide probes spanning the whole of chromosome 17, including 12,314 probes spanning an approximately 8 Mb interval surrounding the NF1 locus. We validated this approach by testing NF1 microdeleted DNA samples previously characterized by means of microsatellites and real-time PCR methods. Our array comparative genomic hybridization provided enough information for subsequent long-range PCR and nucleotide sequencing of the microdeletion endpoints. Unlike previously described methods, our array comparative genomic hybridization was able to unambiguously differentiate between the three types of microdeletions (type I, type II, and atypical) and to characterize atypical microdeletions. Further comparative studies of patients with well-characterized genotypes and phenotypes and different microdeletions sizes and breakpoints will help determine whether haploinsufficiency of deleted genes and/or genes rearrangements influence clinical outcomes.


BMC Genomics | 2013

MicroRNAome profiling in benign and malignant neurofibromatosis type 1-associated nerve sheath tumors: evidences of PTEN pathway alterations in early NF1 tumorigenesis

Julien Masliah-Planchon; Eric Pasmant; Armelle Luscan; Ingrid Laurendeau; Nicolas Ortonne; Mikaël Hivelin; Jennifer Varin; Laurence Valeyrie-Allanore; Valérie Dumaine; L. Lantieri; Karen Leroy; Béatrice Parfait; P. Wolkenstein; Michel Vidaud; Dominique Vidaud; Ivan Bièche

BackgroundNeurofibromatosis type 1 (NF1) is a common dominant tumor predisposition syndrome affecting 1 in 3,500 individuals. The hallmarks of NF1 are the development of peripheral nerve sheath tumors either benign (dermal and plexiform neurofibromas) or malignant (MPNSTs).ResultsTo comprehensively characterize the role of microRNAs in NF1 tumorigenesis, we analyzed 377 miRNAs expression in a large panel of dermal and plexiform neurofibromas, and MPNSTs. The most significantly upregulated miRNA in plexiform neurofibromas was miR-486-3p that targets the major tumor suppressor gene, PTEN. We confirmed PTEN downregulation at mRNA level. In plexiform neurofibromas, we also report aberrant expression of four miRNAs involved in the RAS-MAPK pathway (miR-370, miR-143, miR-181a, and miR-145). In MPNSTs, significant deregulated miRNAs were involved in PTEN repression (miR-301a, miR-19a, and miR-106b), RAS-MAPK pathway regulation (Let-7b, miR-195, and miR-10b), mesenchymal transition (miR-200c, let-7b, miR-135a, miR-135b, and miR-9), HOX genes expression (miR-210, miR-196b, miR-10a, miR-10b, and miR-9), and cell cycle progression (miR-195, let-7b, miR-20a, miR-210, miR-129-3p, miR-449a, and miR-106b).ConclusionWe confirmed the implication of PTEN in genesis of plexiform neurofibromas and MPNSTs in NF1. Markedly deregulated miRNAs might have potential diagnostic or prognostic value and could represent novel strategies for effective pharmacological therapies of NF1 tumors.


Journal of Neuropathology and Experimental Neurology | 2010

Differential Expression of CCN1/CYR61, CCN3/NOV, CCN4/WISP1, and CCN5/WISP2 in Neurofibromatosis Type 1 Tumorigenesis

Eric Pasmant; Nicolas Ortonne; Laure Rittié; Ingrid Laurendeau; Pascale Lèvy; Vladimir Lazar; Béatrice Parfait; Karen Leroy; Philippe Dessen; Laurence Valeyrie-Allanore; Bernard Perbal; Pierre Wolkenstein; Michel Vidaud; Dominique Vidaud; Ivan Bièche

The hallmark of neurofibromatosis type 1 is the development of dermal and plexiform neurofibromas. Neurofibromatosis type 1patients with plexiform neurofibromas are at risk of developing malignant peripheral nerve sheath tumors. We applied a 22,000-oligonucleotide microarray transcriptomic approach to a series of plexiform neurofibromas in comparison with dermal neurofibromas, and results were confirmed with real-time quantitative reverse transcription-polymerase chain reaction. Thirteen genes were upregulated and 10 were downregulated in plexiform neurofibromas. The upregulated genes mainly encode molecules involved in cell adhesion, extracellular matrix, fibrogenesis, and angiogenesis. Several CCN gene family members were dysregulated in neurofibromatosis type 1tumorigenesis; the angiogenic gene CCN1/CYR61 was specifically upregulated in the plexiform neurofibromas; CCN4/WISP1 was upregulated, and CCN3/NOV and CCN5/WISP2 were downregulated inpaired comparisons of plexiform neurofibroma and malignant peripheral nerve sheath tumor from the same patients. CCN1 and CCN3 proteins were detected by immunohistochemistry in neurofibromatosis type 1-associated tumors. Upregulation of S100A8, S100A9, and CD36 was also observed and suggests a role of this pathway in inflammation-associated genesis of plexiform neurofibromas. In summary, a limited number of pathways are potentially involved in plexiform neurofibroma development. Some of the genes identified, particularly CCN1, might be useful diagnostic or prognostic markers or form the basis for novel therapeutic strategies.


Genes, Chromosomes and Cancer | 2017

Confirmation of mutation landscape of NF1‐associated malignant peripheral nerve sheath tumors

Pierre Sohier; Armelle Luscan; Angharad Lloyd; Kevin E. Ashelford; Ingrid Laurendeau; Audrey Briand-Suleau; Dominique Vidaud; Nicolas Ortonne; Eric Pasmant; Meena Upadhyaya

The commonest tumors associated with neurofibromatosis type 1 (NF1) are benign peripheral nerve sheath tumors, called neurofibromas. Malignant transformation of neurofibromas into aggressive MPNSTs may occur with a poor patient prognosis. A cooperative role of SUZ12 or EED inactivation, along with NF1, TP53, and CDKN2A loss‐of‐function, has been proposed to drive progression to MPNSTs. An exome sequencing analysis of eight MPNSTs, one plexiform neurofibroma, and seven cutaneous neurofibromas was undertaken. Biallelic inactivation of the NF1 gene was observed in the plexiform neurofibroma and the MPNSTs, underlining that somatic biallelic NF1 inactivation is likely to be the initiating event for plexiform neurofibroma genesis, although it is unlikely to be sufficient for the subsequent MPNST development. The majority (5/8) of MPNSTs in our analyses demonstrated homozygous or heterozygous deletions of CDKN2A, which may represent an early event following NF1 LOH in the malignant transformation of Schwann cells from plexiform neurofibroma to MPNST. Biallelic somatic alterations of SUZ12 was also found in 4/8 MPNSTs. EED biallelic alterations were detected in 2 of the other four MPNSTs, with one tumor having a homozygous EED deletion. A missense mutation in the chromatin regulator KDM2B was also identified in one MPNST. No TP53 point mutations were found in this study, confirming previous data that TP53 mutations may be relatively rare in NF1‐associated MPNSTs. Our study confirms the frequent biallelic inactivation of PRC2 subunits SUZ12 and EED in MPNSTs, and suggests the implication of KDM2B.

Collaboration


Dive into the Dominique Vidaud's collaboration.

Top Co-Authors

Avatar

Eric Pasmant

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Béatrice Parfait

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Michel Vidaud

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Ingrid Laurendeau

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Armelle Luscan

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Audrey Sabbagh

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge