Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Donald A. Bruun is active.

Publication


Featured researches published by Donald A. Bruun.


Molecular Cell | 2001

Positional Cloning of a Novel Fanconi Anemia Gene, FANCD2

Cynthia Timmers; Toshiyasu Taniguchi; James Hejna; Carol Reifsteck; Lora Lucas; Donald A. Bruun; Matthew Thayer; Barbara Cox; Susan B. Olson; Alan D. D'Andrea; Robb E. Moses; Markus Grompe

Fanconi anemia (FA) is a genetic disease with birth defects, bone marrow failure, and cancer susceptibility. To date, genes for five of the seven known complementation groups have been cloned. Complementation group D is heterogeneous, consisting of two distinct genes, FANCD1 and FANCD2. Here we report the positional cloning of FANCD2. The gene consists of 44 exons, encodes a novel 1451 amino acid nuclear protein, and has two protein isoforms. Similar to other FA proteins, the FANCD2 protein has no known functional domains, but unlike other known FA genes, FANCD2 is highly conserved in A. thaliana, C. elegans, and Drosophila. Retroviral transduction of the cloned FANCD2 cDNA into FA-D2 cells resulted in functional complementation of MMC sensitivity.


Toxicological Sciences | 2011

Chlorpyrifos-Oxon Disrupts Zebrafish Axonal Growth and Motor Behavior

Dongren Yang; Holly Lauridsen; Kalmia S. Buels; Lai Har Chi; Jane La Du; Donald A. Bruun; James R. Olson; Robert L. Tanguay; Pamela J. Lein

Axonal morphology is a critical determinant of neuronal connectivity, and perturbation of the rate or extent of axonal growth during development has been linked to neurobehavioral deficits in animal models and humans. We previously demonstrated that the organophosphorus pesticide (OP) chlorpyrifos (CPF) inhibits axonal growth in cultured neurons. In this study, we used a zebrafish model to determine whether CPF, its oxon metabolite (CPFO), or the excreted metabolite trichloro-2-pyridinol (TCPy) alter spatiotemporal patterns of axonal growth in vivo. Static waterborne exposure to CPFO, but not CPF or TCPy, at concentrations ≥ 0.03 μM from 24- to 72-h post fertilization significantly inhibited acetylcholinesterase, and high-performance liquid chromatography detected significantly more TCPy in zebrafish exposed to 0.1 μM CPFO versus 1.0 μM CPF. These data suggest that zebrafish lack the metabolic enzymes to activate CPF during these early developmental stages. Consistent with this, CPFO, but not CPF, significantly inhibited axonal growth of sensory neurons, primary motoneurons, and secondary motoneurons at concentrations ≥ 0.1 μM. Secondary motoneurons were the most sensitive to axonal growth inhibition by CPFO, which was observed at concentrations that did not cause mortality, gross developmental defects, or aberrant somatic muscle differentiation. CPFO effects on axonal growth correlated with adverse effects on touch-induced swimming behavior, suggesting the functional relevance of these structural changes. These data suggest that altered patterns of neuronal connectivity contribute to the developmental neurotoxicity of CPF and demonstrate the relevance of zebrafish as a model for studying OP developmental neurotoxicity.


Environmental Health Perspectives | 2012

PCB-95 modulates the calcium-dependent signaling pathway responsible for activity-dependent dendritic growth.

Gary A. Wayman; Diptiman D. Bose; Dongren Yang; Donald A. Bruun; Soren Impey; Veronica Ledoux; Isaac N. Pessah; Pamela J. Lein

Background: Non-dioxin-like (NDL) polychlorinated biphenyls (PCBs) promote dendritic growth in hippocampal neurons via ryanodine receptor (RyR)-dependent mechanisms; however, downstream signaling events that link enhanced RyR activity to dendritic growth are unknown. Activity-dependent dendritic growth, which is a critical determinant of neuronal connectivity in the developing brain, is mediated by calcium ion (Ca2+)-dependent activation of Ca2+/calmodulin kinase-I (CaMKI), which triggers cAMP response element binding protein (CREB)-dependent Wnt2 transcription. RyRs regulate the spatiotemporal dynamics of intracellular Ca2+ signals, but whether RyRs promote dendritic growth via modulation of this signaling pathway is not known. Objective: We tested the hypothesis that the CaMKI–CREB–Wnt2 signaling pathway couples NDL PCB-enhanced RyR activity to dendritic arborization. Methods and Results: Ca2+ imaging of dissociated cultures of primary rat hippocampal neurons indicated that PCB-95 (2,2´,3,5´6-pentachlorobiphenyl; a potent RyR potentiator), enhanced synchronized Ca2+ oscillations in somata and dendrites that were blocked by ryanodine. As determined by Western blotting and quantitative polymerase chain reaction, PCB-95 also activated CREB and up-regulated Wnt2. Blocking CaMKK, CaMKIα/γ, MEK/ERK, CREB, or Wnt2 prevented PCB-95–induced dendritic growth. Antagonism of γ-aminobutyric acid (GABA) receptors with bicuculline (BIC) phenocopied the dendrite-promoting effects of PCB-95, and pharmacological antagonism or siRNA knockdown of RyR blocked BIC-induced dendritic growth in dissociated and slice cultures of hippocampal neurons. Conclusions: RyR activity contributes to dynamic remodeling of dendritic architecture in response to NDL PCBs via CaMKI–CREB–Wnt2 signaling in rats. Our findings identify PCBs as candidate environmental risk factors for neurodevelopmental disorders, especially in children with heritable deficits in calcium signaling associated with autism.


Environmental Health Perspectives | 2012

PCB-95 promotes dendritic growth via ryanodine receptor-dependent mechanisms.

Gary A. Wayman; Dongren Yang; Diptiman D. Bose; Veronica Ledoux; Donald A. Bruun; Isaac N. Pessah; Pamela J. Lein

Background: Aroclor 1254 (A1254) interferes with normal dendritic growth and plasticity in the developing rodent brain, but the mechanism(s) mediating this effect have yet to be established. Non-dioxin-like (NDL) polychlorinated biphenyls (PCBs) enhance the activity of ryanodine receptor (RyR) calcium ion (Ca2+) channels, which play a central role in regulating the spatiotemporal dynamics of intracellular Ca2+ signaling. Ca2+ signaling is a predominant factor in shaping dendritic arbors, but whether PCB potentiation of RyR activity influences dendritic growth is not known. Objective: We determined whether RyR activity is required for PCB effects on dendritic growth. Methods and Results: Golgi analysis of hippocampi from weanling rats confirmed that developmental exposure via the maternal diet to NDL PCB-95 (2,2´,3,5´6-pentachlorobiphenyl), a potent RyR potentiator, phenocopies the dendrite-promoting effects of A1254. Dendritic growth in dissociated cultures of primary hippocampal neurons and in hippocampal slice cultures is similarly enhanced by PCB-95 but not by PCB-66 (2,3,4´,4-tetrachlorobiphenyl), a congener with negligible effects on RyR activity. The dendrite-promoting effects of PCB-95 are evident at concentrations as low as 2 pM and are inhibited by either pharmacologic blockade or siRNA knockdown of RyRs. Conclusions: Our findings demonstrate that environmentally relevant levels of NDL PCBs modulate neuronal connectivity via RyR-dependent effects on dendritic arborization. In addition, these findings identify RyR channel dysregulation as a novel mechanism contributing to dysmorphic dendritogenesis associated with heritable and environmentally triggered neurodevelopmental disorders.


The Journal of Neuroscience | 2007

The Novel GTPase Rit Differentially Regulates Axonal and Dendritic Growth

Pamela J. Lein; Xin Guo; Geng Xian Shi; Melissa Moholt-Siebert; Donald A. Bruun; Douglas A. Andres

The Rit GTPase is widely expressed in developing and adult nervous systems, and our previous data with pheochromocytoma cells implicate Rit signaling in NGF-induced neurite outgrowth. In this study, we investigated a role for Rit in neuronal morphogenesis. Expression of a dominant-negative (dn) Rit mutant in hippocampal neurons inhibited axonal growth but potentiated dendritic growth. Conversely, a constitutively active (ca) Rit mutant promoted axonal growth but inhibited dendritic growth. Dendritogenesis is regulated differently in sympathetic neurons versus hippocampal neurons in that sympathetic neurons require NGF and bone morphogenetic proteins (BMPs) to trigger dendritic growth. Despite these differences, dnRit potentiated and caRit blocked BMP7-induced dendritic growth in sympathetic neurons. Biochemical studies indicated that BMP7 treatments that caused dendritic growth also decreased Rit GTP loading. Additional studies demonstrate that caRit increased extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and pharmacological inhibition of MEK1 (mitogen-activated protein kinase/ERK 1) blocked the axon-promoting and dendrite-inhibiting effects of caRit. These observations suggest that Rit is a convergence point for multiple signaling pathways and it functions to promote axonal growth but inhibit dendritic growth via activation of ERK1/2. Modulation of the activational status of Rit may therefore represent a generalized mechanism across divergent neuronal cell types for regulating axonal versus dendritic growth modes.


DNA Repair | 2003

siRNA depletion of BRCA1, but not BRCA2, causes increased genome instability in Fanconi anemia cells.

Donald A. Bruun; Alexandra Folias; Yassmine Akkari; Yumi Cox; Susan B. Olson; Robb E. Moses

BRCA1 and BRCA2 proteins act in repair of interstrand crosslinks (ICLs) and maintenance of genome stability and are known to be part of the Fanconi anemia (FA) pathway. We have investigated the role of the BRCA1 and BRCA2 genes in genome stability following ICL damage in normal and FA cells. To circumvent cell lethality of complete disruptions in BRCA1 or BRCA2, small inhibitory RNA (siRNA) was used to transiently deplete the expression of the proteins. Using chromosomal stability after ICL damage as the end point, we find that BRCA1 functions in more than just the FA pathway for genome maintenance, whereas BRCA2 appears to act predominantly in the FA pathway. Depletion of BRCA1 causes a marked decrease, although not a complete absence of, ubiquitination of FANCD2. In contrast to BRCA1, BRCA2 is not needed for normal ubiquitination of FANCD2 after DNA damage, a requirement for the FA pathway to function. Thus, BRCA2 is epistatic to FA genes for ICL repair, but not for damage-induced modification of FANCD2 and may act downstream form FANCD2.


Toxicology and Applied Pharmacology | 2011

Spatiotemporal pattern of neuronal injury induced by DFP in rats: A model for delayed neuronal cell death following acute OP intoxication

Yonggang Li; Pamela J. Lein; Cuimei Liu; Donald A. Bruun; Teclemichael Tewolde; Gregory D. Ford; Byron D. Ford

Organophosphate (OP) neurotoxins cause acute cholinergic toxicity and seizures resulting in delayed brain damage and persistent neurological symptoms. Testing novel strategies for protecting against delayed effects of acute OP intoxication has been hampered by the lack of appropriate animal models. In this study, we characterize the spatiotemporal pattern of cellular injury after acute intoxication with the OP diisopropylfluorophosphate (DFP). Adult male Sprague-Dawley rats received pyridostigmine (0.1 mg/kg, im) and atropine methylnitrate (20mg/kg, im) prior to DFP (9 mg/kg, ip) administration. All DFP-treated animals exhibited moderate to severe seizures within minutes after DFP injection but survived up to 72 h. AChE activity was significantly depressed in the cortex, hippocampus, subcortical brain tissue and cerebellum at 1h post-DFP injection and this inhibition persisted for up to 72 h. Analysis of neuronal injury by Fluoro-Jade B (FJB) labeling revealed delayed neuronal cell death in the hippocampus, cortex, amygdala and thalamus, but not the cerebellum, starting at 4h and persisting until 72 h after DFP treatment, although temporal profiles varied between brain regions. At 24h post-DFP injection, the pattern of FJB labeling corresponded to TUNEL staining in most brain regions, and FJB-positive cells displayed reduced NeuN immunoreactivity but were not immunopositive for astrocytic (GFAP), oligodendroglial (O4) or macrophage/microglial (ED1) markers, demonstrating that DFP causes a region-specific delayed neuronal injury mediated in part by apoptosis. These findings indicate the feasibility of this model for testing neuroprotective strategies, and provide insight regarding therapeutic windows for effective pharmacological intervention following acute OP intoxication.


Journal of Neurochemistry | 2009

Statins decrease dendritic arborization in rat sympathetic neurons by blocking RhoA activation

Woo Yang Kim; Eugene A. Gonsiorek; Chris Barnhart; Monika A. Davare; Abby J. Engebose; Holly Lauridsen; Donald A. Bruun; Gary A. Wayman; Robert C. Bucelli; Dennis Higgins; Pamela J. Lein

Clinical and experimental evidence suggest that statins decrease sympathetic activity, but whether peripheral mechanisms involving direct actions on post‐ganglionic sympathetic neurons contribute to this effect is not known. Because tonic activity of these neurons is directly correlated with the size of their dendritic arbor, we tested the hypothesis that statins decrease dendritic arborization in sympathetic neurons. Oral administration of atorvastatin (20 mg/kg/day for 7 days) significantly reduced dendritic arborization in vivo in sympathetic ganglia of adult male rats. In cultured sympathetic neurons, statins caused dendrite retraction and reversibly blocked bone morphogenetic protein‐induced dendritic growth without altering cell survival or axonal growth. Supplementation with mevalonate or isoprenoids, but not cholesterol, attenuated the inhibitory effects of statins on dendritic growth, whereas specific inhibition of isoprenoid synthesis mimicked these statin effects. Statins blocked RhoA translocation to the membrane, an event that requires isoprenylation, and constitutively active RhoA reversed statin effects on dendrites. These observations that statins decrease dendritic arborization in sympathetic neurons by blocking RhoA activation suggest a novel mechanism by which statins decrease sympathetic activity and protect against cardiovascular and cerebrovascular disease.


Journal of Pharmacology and Experimental Therapeutics | 2007

Statins decrease expression of the proinflammatory neuropeptides calcitonin gene-related peptide and substance P in sensory neurons

Robert C. Bucelli; Eugene A. Gonsiorek; Woo Yang Kim; Donald A. Bruun; Richard A. Rabin; Dennis Higgins; Pamela J. Lein

Clinical and experimental observations suggest that statins may be useful for treating diseases presenting with predominant neurogenic inflammation, but the mechanism(s) mediating this potential therapeutic effect are poorly understood. In this study, we tested the hypothesis that statins act directly on sensory neurons to decrease expression of proinflammatory neuropeptides that trigger neurogenic inflammation, specifically calcitonin gene-related peptide (CGRP) and substance P. Reverse transcriptase-polymerase chain reaction, radioimmunoassay, and immunocytochemistry were used to quantify CGRP and substance P expression in dorsal root ganglia (DRG) harvested from adult male rats and in primary cultures of sensory neurons derived from embryonic rat DRG. Systemic administration of statins at pharmacologically relevant doses significantly reduced CGRP and substance P levels in DRG in vivo. In cultured sensory neurons, statins blocked bone morphogenetic protein (BMP)-induced CGRP and substance P expression and decreased expression of these neuropeptides in sensory neurons pretreated with BMPs. These effects were concentration-dependent and occurred independent of effects on cell survival or axon growth. Statin inhibition of neuropeptide expression was reversed by supplementation with mevalonate and cholesterol, but not isoprenoid precursors. BMPs signal via Smad activation, and cholesterol depletion by statins inhibited Smad1 phosphorylation and nuclear translocation. These findings identify a novel action of statins involving down-regulation of proinflammatory neuropeptide expression in sensory ganglia via cholesterol depletion and decreased Smad1 activation and suggest that statins may be effective in attenuating neurogenic inflammation.


American Journal of Human Genetics | 2000

Localization of the Fanconi anemia complementation group D gene to a 200-kb region on chromosome 3p25.3.

James Hejna; Cynthia Timmers; Carol Reifsteck; Donald A. Bruun; Lora Lucas; Petra M. Jakobs; SuEllen Toth-Fejel; Nancy Unsworth; Susan L. Clemens; Dawn Garcia; Susan L. Naylor; Mathew J. Thayer; Susan B. Olson; Markus Grompe; Robb E. Moses

Fanconi anemia (FA) is a rare autosomal recessive disease manifested by bone-marrow failure and an elevated incidence of cancer. Cells taken from patients exhibit spontaneous chromosomal breaks and rearrangements. These breaks and rearrangements are greatly elevated by treatment of FA cells with the use of DNA cross-linking agents. The FA complementation group D gene (FANCD) has previously been localized to chromosome 3p22-26, by use of microcell-mediated chromosome transfer. Here we describe the use of noncomplemented microcell hybrids to identify small overlapping deletions that narrow the FANCD critical region. A 1.2-Mb bacterial-artificial-chromosome (BAC)/P1 contig was constructed, bounded by the marker D3S3691 distally and by the gene ATP2B2 proximally. The contig contains at least 36 genes, including the oxytocin receptor (OXTR), hOGG1, the von Hippel-Lindau tumor-suppressor gene (VHL), and IRAK-2. Both hOGG1 and IRAK-2 were excluded as candidates for FANCD. BACs were then used as probes for FISH analyses, to map the extent of the deletions in four of the noncomplemented microcell hybrid cell lines. A narrow region of common overlapping deletions limits the FANCD critical region to approximately 200 kb. The three candidate genes in this region are TIGR-A004X28, SGC34603, and AA609512.

Collaboration


Dive into the Donald A. Bruun's collaboration.

Top Co-Authors

Avatar

Pamela J. Lein

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dongren Yang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bora Inceoglu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge