Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pamela J. Lein is active.

Publication


Featured researches published by Pamela J. Lein.


Pharmacology & Therapeutics | 2010

Minding the calcium store: Ryanodine receptor activation as a convergent mechanism of PCB toxicity

Isaac N. Pessah; Gennady Cherednichenko; Pamela J. Lein

Chronic low-level polychlorinated biphenyl (PCB) exposures remain a significant public health concern since results from epidemiological studies indicate that PCB burden is associated with immune system dysfunction, cardiovascular disease, and impairment of the developing nervous system. Of these various adverse health effects, developmental neurotoxicity has emerged as a particularly vulnerable endpoint in PCB toxicity. Arguably the most pervasive biological effects of PCBs could be mediated by their ability to alter the spatial and temporal fidelity of Ca2+ signals through one or more receptor-mediated processes. This review will focus on our current knowledge of the structure and function of ryanodine receptors (RyRs) in muscle and nerve cells and how PCBs and related non-coplanar structures alter these functions. The molecular and cellular mechanisms by which non-coplanar PCBs and related structures alter local and global Ca2+ signaling properties and the possible short and long-term consequences of these perturbations on neurodevelopment and neurodegeneration are reviewed.


Environmental Health Perspectives | 2007

Workgroup Report: Incorporating In Vitro Alternative Methods for Developmental Neurotoxicity into International Hazard and Risk Assessment Strategies

Sandra Coecke; Alan M. Goldberg; Sandra Allen; Leonora Buzanska; Gemma Calamandrei; Kevin M. Crofton; Lars Hareng; Thomas Hartung; Holger Knaut; Paul Honegger; Miriam Jacobs; Pamela J. Lein; Abby A. Li; William R. Mundy; D.E. Owen; Steffen Schneider; Ellen K. Silbergeld; Torsten Reum; Tomas Trnovec; Florianne Monnet-Tschudi; Anna Bal-Price

This is the report of the first workshop on Incorporating In Vitro Alternative Methods for Developmental Neurotoxicity (DNT) Testing into International Hazard and Risk Assessment Strategies, held in Ispra, Italy, on 19–21 April 2005. The workshop was hosted by the European Centre for the Validation of Alternative Methods (ECVAM) and jointly organized by ECVAM, the European Chemical Industry Council, and the Johns Hopkins University Center for Alternatives to Animal Testing. The primary aim of the workshop was to identify and catalog potential methods that could be used to assess how data from in vitro alternative methods could help to predict and identify DNT hazards. Working groups focused on two different aspects: a) details on the science available in the field of DNT, including discussions on the models available to capture the critical DNT mechanisms and processes, and b) policy and strategy aspects to assess the integration of alternative methods in a regulatory framework. This report summarizes these discussions and details the recommendations and priorities for future work.


Neurotoxicology | 2011

Correlating neurobehavioral performance with biomarkers of organophosphorous pesticide exposure.

Diane S. Rohlman; W. Kent Anger; Pamela J. Lein

There is compelling evidence that adverse neurobehavioral effects are associated with occupational organophosphorous pesticide (OP) exposure in humans. Behavioral studies of pesticide applicators, greenhouse workers, agricultural workers and farm residents exposed repeatedly over months or years to low levels of OPs reveal a relatively consistent pattern of neurobehavioral deficits. However, only two studies have demonstrated a link between neurobehavioral performance and current biomarkers of OP exposure including blood cholinesterase (ChE) activity and urinary levels of OP metabolites. A variety of reasons may explain why so few studies have reported such correlations, including differing individual and group exposure histories, differing methodologies for assessing behavior and exposure, and lack of a reliable index of exposure. Alternatively, these data may suggest that current biomarkers (ChE, urine metabolites) are neither predictive nor diagnostic of the neurobehavioral effects of chronic OP pesticide exposures. This review focuses on the evidence that neurobehavioral performance deficits are associated with occupational OP pesticide exposure and concludes that research needs to return to the basics and rigorously test the relationships between neurobehavioral performance and both current (ChE and urine metabolites) and novel (e.g., inflammation and oxidative stress) biomarkers using human and animal models. The results of such studies are critically important because OP pesticides are widely and extensively used throughout the world, including situations where exposure controls and personal protective equipment are not routinely used.


Neurotoxicology | 2012

A review of experimental evidence linking neurotoxic organophosphorus compounds and inflammation.

Christopher N. Banks; Pamela J. Lein

Organophosphorus (OP) nerve agents and pesticides inhibit acetylcholinesterase (AChE), and this is thought to be a primary mechanism mediating the neurotoxicity of these compounds. However, a number of observations suggest that mechanisms other than or in addition to AChE inhibition contribute to OP neurotoxicity. There is significant experimental evidence that acute OP intoxication elicits a robust inflammatory response, and emerging evidence suggests that chronic repeated low-level OP exposure also upregulates inflammatory mediators. A critical question that is just beginning to be addressed experimentally is the pathophysiologic relevance of inflammation in either acute or chronic OP intoxication. The goal of this article is to provide a brief review of the current status of our knowledge linking inflammation to OP intoxication, and to discuss the implications of these findings in the context of therapeutic and diagnostic approaches to OP neurotoxicity.


Environmental Health Perspectives | 2007

Meeting report: alternatives for developmental neurotoxicity testing.

Pamela J. Lein; Paul A. Locke; Alan M. Goldberg

Developmental neurotoxicity testing (DNT) is perceived by many stakeholders to be an area in critical need of alternatives to current animal testing protocols and guidelines. To address this need, the Johns Hopkins Center for Alternatives to Animal Testing (CAAT), the U.S. Environmental Protection Agency, and the National Toxicology Program are collaborating in a program called TestSmart DNT, the goals of which are to: (a) develop alternative methodologies for identifying and prioritizing chemicals and exposures that may cause developmental neurotoxicity in humans; (b) develop the policies for incorporating DNT alternatives into regulatory decision making; and (c) identify opportunities for reducing, refining, or replacing the use of animals in DNT. The first TestSmart DNT workshop was an open registration meeting held 13–15 March 2006 in Reston, Virginia. The primary objective was to bring together stakeholders (test developers, test users, regulators, and advocates for children’s health, animal welfare, and environmental health) and individuals representing diverse disciplines (developmental neurobiology, toxicology, policy, and regulatory science) from around the world to share information and concerns relating to the science and policy of DNT. Individual presentations are available at the CAAT TestSmart website. This report provides a synthesis of workgroup discussions and recommendations for future directions and priorities, which include initiating a systematic evaluation of alternative models and technologies, developing a framework for the creation of an open database to catalog DNT data, and devising a strategy for harmonizing the validation process across international jurisdictional borders.


Environmental Health Perspectives | 2009

Developmental Exposure to Polychlorinated Biphenyls Interferes with Experience-Dependent Dendritic Plasticity and Ryanodine Receptor Expression in Weanling Rats

Dongren Yang; Kyung-Ho Kim; Andrew Phimister; Adam D. Bachstetter; Thomas R. Ward; Robert W. Stackman; Ronald F. Mervis; Amy B. Wisniewski; Sabra L. Klein; Prasada Rao S. Kodavanti; Kim A. Anderson; Gary A. Wayman; Isaac N. Pessah; Pamela J. Lein

Background Neurodevelopmental disorders are associated with altered patterns of neuronal connectivity. A critical determinant of neuronal connectivity is the dendritic morphology of individual neurons, which is shaped by experience. The identification of environmental exposures that interfere with dendritic growth and plasticity may, therefore, provide insight into environmental risk factors for neurodevelopmental disorders. Objective We tested the hypothesis that polychlorinated biphenyls (PCBs) alter dendritic growth and/or plasticity by promoting the activity of ryanodine receptors (RyRs). Methods and Results The Morris water maze was used to induce experience-dependent neural plasticity in weanling rats exposed to either vehicle or Aroclor 1254 (A1254) in the maternal diet throughout gestation and lactation. Developmental A1254 exposure promoted dendritic growth in cerebellar Purkinje cells and neocortical pyramidal neurons among untrained animals but attenuated or reversed experience-dependent dendritic growth among maze-trained littermates. These structural changes coincided with subtle deficits in spatial learning and memory, increased [3H]-ryanodine binding sites and RyR expression in the cerebellum of untrained animals, and inhibition of training-induced RyR upregulation. A congener with potent RyR activity, PCB95, but not a congener with negligible RyR activity, PCB66, promoted dendritic growth in primary cortical neuron cultures and this effect was blocked by pharmacologic antagonism of RyR activity. Conclusions Developmental exposure to PCBs interferes with normal patterns of dendritic growth and plasticity, and these effects may be linked to changes in RyR expression and function. These findings identify PCBs as candidate environmental risk factors for neurodevelopmental disorders, especially in children with heritable deficits in calcium signaling.


Environmental Toxicology and Pharmacology | 2005

In vitro and other alternative approaches to developmental neurotoxicity testing (DNT).

Pamela J. Lein; Ellen K. Silbergeld; Paul A. Locke; Alan M. Goldberg

To address the growing need for scientifically valid and humane alternatives to developmental neurotoxicity testing (DNT), we propose that basic research scientists in developmental neurobiology be brought together with mechanistic toxicologists and policy analysts to develop the science and policy for DNT alternatives that are based on evolutionarily conserved mechanisms of neurodevelopment. In this article we briefly review in vitro and other alternative models and present our rationale for proposing that resources be focused on adapting alternative simple organism systems for DNT. We recognize that alternatives to DNT will not completely replace a DNT paradigm that involves in vivo testing in mammals. However, we believe that alternatives will be of great value in prioritizing chemicals and in identifying mechanisms of developmental neurotoxicity, which in turn will be useful in refining and reducing in vivo mammalian tests for exposures most likely to be hazardous to the developing human nervous system.


Toxicological Sciences | 2011

Chlorpyrifos-Oxon Disrupts Zebrafish Axonal Growth and Motor Behavior

Dongren Yang; Holly Lauridsen; Kalmia S. Buels; Lai Har Chi; Jane La Du; Donald A. Bruun; James R. Olson; Robert L. Tanguay; Pamela J. Lein

Axonal morphology is a critical determinant of neuronal connectivity, and perturbation of the rate or extent of axonal growth during development has been linked to neurobehavioral deficits in animal models and humans. We previously demonstrated that the organophosphorus pesticide (OP) chlorpyrifos (CPF) inhibits axonal growth in cultured neurons. In this study, we used a zebrafish model to determine whether CPF, its oxon metabolite (CPFO), or the excreted metabolite trichloro-2-pyridinol (TCPy) alter spatiotemporal patterns of axonal growth in vivo. Static waterborne exposure to CPFO, but not CPF or TCPy, at concentrations ≥ 0.03 μM from 24- to 72-h post fertilization significantly inhibited acetylcholinesterase, and high-performance liquid chromatography detected significantly more TCPy in zebrafish exposed to 0.1 μM CPFO versus 1.0 μM CPF. These data suggest that zebrafish lack the metabolic enzymes to activate CPF during these early developmental stages. Consistent with this, CPFO, but not CPF, significantly inhibited axonal growth of sensory neurons, primary motoneurons, and secondary motoneurons at concentrations ≥ 0.1 μM. Secondary motoneurons were the most sensitive to axonal growth inhibition by CPFO, which was observed at concentrations that did not cause mortality, gross developmental defects, or aberrant somatic muscle differentiation. CPFO effects on axonal growth correlated with adverse effects on touch-induced swimming behavior, suggesting the functional relevance of these structural changes. These data suggest that altered patterns of neuronal connectivity contribute to the developmental neurotoxicity of CPF and demonstrate the relevance of zebrafish as a model for studying OP developmental neurotoxicity.


The Journal of Neuroscience | 2002

Glia Induce Dendritic Growth in Cultured Sympathetic Neurons by Modulating the Balance between Bone Morphogenetic Proteins (BMPs) and BMP Antagonists

Pamela J. Lein; Hiroko Beck; Vidya Chandrasekaran; Patrick J. Gallagher; Hui Ling Chen; Yuan Lin; Xin Guo; Paul L. Kaplan; Henri Tiedge; Dennis Higgins

Dendritic growth in cultured sympathetic neurons requires specific trophic interactions. Previous studies have demonstrated that either coculture with glia or exposure to recombinant bone morphogenetic proteins (BMPs) is both necessary and sufficient to induce dendrite formation. These observations led us to test the hypothesis that BMPs mediate glial-induced dendritic growth. In situhybridization and immunocytochemical studies indicate that the spatiotemporal expression of BMP5, -6, and -7 in rat superior cervical ganglia (SCG) is consistent with their proposed role in dendritogenesis. In vitro, both SCG glia and neurons were found to express BMP mRNA and protein when grown in the presence or absence of the other cell type. However, addition of ganglionic glia to cultured sympathetic neurons causes a marked increase in BMP proteins coincident with a significant decrease in follistatin and noggin. Functional assays indicate that glial-induced dendritic growth is significantly reduced by BMP7 antibodies and completely inhibited by exogenous noggin and follistatin. These data suggest that glia influence the rapid perinatal expansion of the dendritic arbor in sympathetic neurons by increasing BMP activity via modulation of the balance between BMPs and their antagonists.


Environmental Health Perspectives | 2012

PCB-95 modulates the calcium-dependent signaling pathway responsible for activity-dependent dendritic growth.

Gary A. Wayman; Diptiman D. Bose; Dongren Yang; Donald A. Bruun; Soren Impey; Veronica Ledoux; Isaac N. Pessah; Pamela J. Lein

Background: Non-dioxin-like (NDL) polychlorinated biphenyls (PCBs) promote dendritic growth in hippocampal neurons via ryanodine receptor (RyR)-dependent mechanisms; however, downstream signaling events that link enhanced RyR activity to dendritic growth are unknown. Activity-dependent dendritic growth, which is a critical determinant of neuronal connectivity in the developing brain, is mediated by calcium ion (Ca2+)-dependent activation of Ca2+/calmodulin kinase-I (CaMKI), which triggers cAMP response element binding protein (CREB)-dependent Wnt2 transcription. RyRs regulate the spatiotemporal dynamics of intracellular Ca2+ signals, but whether RyRs promote dendritic growth via modulation of this signaling pathway is not known. Objective: We tested the hypothesis that the CaMKI–CREB–Wnt2 signaling pathway couples NDL PCB-enhanced RyR activity to dendritic arborization. Methods and Results: Ca2+ imaging of dissociated cultures of primary rat hippocampal neurons indicated that PCB-95 (2,2´,3,5´6-pentachlorobiphenyl; a potent RyR potentiator), enhanced synchronized Ca2+ oscillations in somata and dendrites that were blocked by ryanodine. As determined by Western blotting and quantitative polymerase chain reaction, PCB-95 also activated CREB and up-regulated Wnt2. Blocking CaMKK, CaMKIα/γ, MEK/ERK, CREB, or Wnt2 prevented PCB-95–induced dendritic growth. Antagonism of γ-aminobutyric acid (GABA) receptors with bicuculline (BIC) phenocopied the dendrite-promoting effects of PCB-95, and pharmacological antagonism or siRNA knockdown of RyR blocked BIC-induced dendritic growth in dissociated and slice cultures of hippocampal neurons. Conclusions: RyR activity contributes to dynamic remodeling of dendritic architecture in response to NDL PCBs via CaMKI–CREB–Wnt2 signaling in rats. Our findings identify PCBs as candidate environmental risk factors for neurodevelopmental disorders, especially in children with heritable deficits in calcium signaling associated with autism.

Collaboration


Dive into the Pamela J. Lein's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dongren Yang

University of California

View shared research outputs
Top Co-Authors

Avatar

Hao Chen

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge