Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James Hejna is active.

Publication


Featured researches published by James Hejna.


Molecular Cell | 2001

Interaction of the Fanconi Anemia Proteins and BRCA1 in a Common Pathway

Irene Garcia-Higuera; Toshiyasu Taniguchi; Shridar Ganesan; M. Stephen Meyn; Cynthia Timmers; James Hejna; Markus Grompe; Alan D. D'Andrea

Fanconi anemia (FA) is a human autosomal recessive cancer susceptibility disorder characterized by cellular sensitivity to mitomycin C and ionizing radiation. Although six FA genes (for subtypes A, C, D2, E, F, and G) have been cloned, their relationship to DNA repair remains unknown. In the current study, we show that a nuclear complex containing the FANCA, FANCC, FANCF, and FANCG proteins is required for the activation of the FANCD2 protein to a monoubiquitinated isoform. In normal (non-FA) cells, FANCD2 is monoubiquitinated in response to DNA damage and is targeted to nuclear foci (dots). Activated FANCD2 protein colocalizes with the breast cancer susceptibility protein, BRCA1, in ionizing radiation-induced foci and in synaptonemal complexes of meiotic chromosomes. The FANCD2 protein, therefore, provides the missing link between the FA protein complex and the cellular BRCA1 repair machinery. Disruption of this pathway results in the cellular and clinical phenotype common to all FA subtypes.


Molecular Cell | 2001

Positional Cloning of a Novel Fanconi Anemia Gene, FANCD2

Cynthia Timmers; Toshiyasu Taniguchi; James Hejna; Carol Reifsteck; Lora Lucas; Donald A. Bruun; Matthew Thayer; Barbara Cox; Susan B. Olson; Alan D. D'Andrea; Robb E. Moses; Markus Grompe

Fanconi anemia (FA) is a genetic disease with birth defects, bone marrow failure, and cancer susceptibility. To date, genes for five of the seven known complementation groups have been cloned. Complementation group D is heterogeneous, consisting of two distinct genes, FANCD1 and FANCD2. Here we report the positional cloning of FANCD2. The gene consists of 44 exons, encodes a novel 1451 amino acid nuclear protein, and has two protein isoforms. Similar to other FA proteins, the FANCD2 protein has no known functional domains, but unlike other known FA genes, FANCD2 is highly conserved in A. thaliana, C. elegans, and Drosophila. Retroviral transduction of the cloned FANCD2 cDNA into FA-D2 cells resulted in functional complementation of MMC sensitivity.


Journal of Biological Chemistry | 1998

Growth factors and insulin stimulate tyrosine phosphorylation of the 51C/SHIP2 protein.

Tania Habib; James Hejna; Robb E. Moses; Stuart J. Decker

Antibodies raised against the 51C/SHIP2 inositol polyphosphate 5′-phosphatase were used to examine the effects of growth factors and insulin on the metabolism of this protein. Immunoblot analysis revealed that the 51C/SHIP2 protein was widely expressed in fibroblast and nonhematopoietic tumor cell lines, unlike the SHIP protein, which was found only in cell lines of hematopoietic origin. The 51C/SHIP2 antiserum precipitated a protein of approximately 145 kDa along with an activity which hydrolyzed phosphatidylinositol 3,4,5-trisphosphate to phosphatidylinositol 3,4-bisphosphate. Tyrosine phosphorylation of the 51C/SHIP2 protein occurred in response to treatment of cells with epidermal growth (EGF), platelet-derived growth factor (PDGF), nerve growth factor (NGF), insulin-like growth factor-1 (IGF-1), or insulin. EGF and PDGF induced transient tyrosine phosphorylation of 51C/SHIP2, with maximal tyrosine phosphorylation occurring at 5–10 min following treatment and returning to near basal levels within 20 min. In contrast, treatment of cells with NGF, IGF-1, or insulin resulted in prolonged tyrosine phosphorylation of 51C/SHIP2 protein, with 40–80% maximal phosphorylation sustained for up to 2 h following agonist treatment. The kinetics of activation of the Akt/PKB protein kinase by the various factors correlated well with the kinetics of tyrosine phosphorylation of 51C/SHIP2. EGF, NGF, and PDGF stimulated the association of 51C/SHIP2 protein with the Shc adapter protein; however, no Shc could be detected in 51C/SHIP2-immune precipitates from cells treated with IGF-1 or insulin. The data suggest that 51C/SHIP2 may play a significant role in regulation of phosphatidylinositol 3′-kinase signaling by growth factors and insulin.


American Journal of Human Genetics | 2000

Localization of the Fanconi anemia complementation group D gene to a 200-kb region on chromosome 3p25.3.

James Hejna; Cynthia Timmers; Carol Reifsteck; Donald A. Bruun; Lora Lucas; Petra M. Jakobs; SuEllen Toth-Fejel; Nancy Unsworth; Susan L. Clemens; Dawn Garcia; Susan L. Naylor; Mathew J. Thayer; Susan B. Olson; Markus Grompe; Robb E. Moses

Fanconi anemia (FA) is a rare autosomal recessive disease manifested by bone-marrow failure and an elevated incidence of cancer. Cells taken from patients exhibit spontaneous chromosomal breaks and rearrangements. These breaks and rearrangements are greatly elevated by treatment of FA cells with the use of DNA cross-linking agents. The FA complementation group D gene (FANCD) has previously been localized to chromosome 3p22-26, by use of microcell-mediated chromosome transfer. Here we describe the use of noncomplemented microcell hybrids to identify small overlapping deletions that narrow the FANCD critical region. A 1.2-Mb bacterial-artificial-chromosome (BAC)/P1 contig was constructed, bounded by the marker D3S3691 distally and by the gene ATP2B2 proximally. The contig contains at least 36 genes, including the oxytocin receptor (OXTR), hOGG1, the von Hippel-Lindau tumor-suppressor gene (VHL), and IRAK-2. Both hOGG1 and IRAK-2 were excluded as candidates for FANCD. BACs were then used as probes for FISH analyses, to map the extent of the deletions in four of the noncomplemented microcell hybrid cell lines. A narrow region of common overlapping deletions limits the FANCD critical region to approximately 200 kb. The three candidate genes in this region are TIGR-A004X28, SGC34603, and AA609512.


Nucleic Acids Research | 2007

The hSNM1 protein is a DNA 5′-exonuclease

James Hejna; Sahaayaruban Philip; Jesse Ott; Craig Faulkner; Robb E. Moses

The human SNM1 protein is a member of a highly conserved group of proteins catalyzing the hydrolysis of nucleic acid substrates. Although overproduction is unstable in mammalian cells, we have overproduced a recombinant hSNM1 protein in an insect cell system. The protein is a single-strand 5′-exonuclease, like its yeast homolog. The enzyme utilizes either DNA or RNA substrates, requires a 5′-phosphate moiety, shows very little activity on double-strand substrates, and functions at a size consistent with a monomer. The exonuclease activity requires the conserved β-lactamase domain; site-directed mutagenesis of a conserved aspartate inactivates the exonuclease.


Journal of Biological Chemistry | 2008

Tip60 Is Required for DNA Interstrand Cross-link Repair in the Fanconi Anemia Pathway

James Hejna; Megan L. Holtorf; Jennie Hines; Lauren Mathewson; Aaron Hemphill; Muhsen Al-Dhalimy; Susan B. Olson; Robb E. Moses

The disease Fanconi anemia is a genome instability syndrome characterized by cellular sensitivity to DNA interstrand cross-linking agents, manifest by decreased cellular survival and chromosomal aberrations after such treatment. There are at least 13 proteins acting in the pathway, with the FANCD2 protein apparently functioning as a late term effecter in the maintenance of genome stability. We find that the chromatin remodeling protein, Tip60, interacts directly with the FANCD2 protein in a yeast two-hybrid system. This interaction has been confirmed by co-immunoprecipitation and co-localization using both endogenous and epitope-tagged FANCD2 and Tip60 from human cells. The observation of decreased cellular survival after exposure to mitomycin C in normal fibroblasts depleted for Tip60 indicates a direct function in interstrand cross-link repair. The coincident function of Tip60 and FANCD2 in one pathway is supported by the finding that depletion of Tip60 in Fanconi anemia cells does not increase sensitivity to DNA cross-links. However, depletion of Tip60 did not reduce monoubiquitination of FANCD2 or its localization to nuclear foci following DNA damage. The observations indicate that Fanconi anemia proteins act in concert with chromatin remodeling functions to maintain genome stability after DNA cross-link damage.


Cytogenetic and Genome Research | 2009

Topo IIIα and BLM Act within the Fanconi Anemia Pathway in Response to DNA-Crosslinking Agents

Aaron Hemphill; Yassmine Akkari; Amy Hanlon Newell; Roger A. Schultz; Markus Grompe; P.S. North; I.D. Hickson; Petra M. Jakobs; Scott Rennie; Daniel Pauw; James Hejna; Susan B. Olson; Robb E. Moses

The Bloom protein (BLM) and Topoisomerase IIIα are found in association with proteins of the Fanconi anemia (FA) pathway, a disorder manifesting increased cellular sensitivity to DNA crosslinking agents. In order to determine if the association reflects a functional interaction for the maintenance of genome stability, we have analyzed the effects of siRNA-mediated depletion of the proteins in human cells. Depletion of Topoisomerase IIIα or BLM leads to increased radial formation, as is seen in FA. BLM and Topoisomerase IIIα are epistatic to the FA pathway for suppression of radial formation in response to DNA interstrand crosslinks since depletion of either of them in FA cells does not increase radial formation. Depletion of Topoisomerase IIIα or BLM also causes an increase in sister chromatid exchanges, as is seen in Bloom syndrome cells. Human Fanconi anemia cells, however, do not demonstrate increased sister chromatid exchanges, separating this response from radial formation. Primary cell lines from mice defective in both Blm and Fancd2 have the same interstrand crosslink-induced genome instability as cells from mice deficient in the Fancd2 protein alone. These observations demonstrate that the association of BLM and Topoisomerase IIIα with Fanconi proteins is a functional one, delineating a BLM-Topoisomerase IIIα-Fanconi pathway that is critical for suppression of chromosome radial formation.


Cell Biology International | 2010

A FANCD2 domain activates Tip60-dependent apoptosis.

James Hejna; Donald A. Bruun; Daniel Pauw; Robb E. Moses

The FA (Fanconi anaemia) FANCD2 protein is pivotal in the cellular response to DNA interstrand cross‐links. Establishing cells expressing exogenous FANCD2 has proven to be difficult compared with other DNA repair genes. We find that in transformed normal human fibroblasts, exogenous nuclear expression of FANCD2 induces apoptosis, dependent specifically on exons 10–13. This is the same region required for interaction with the histone acetyltransferase, Tip60. Deletion of exons 10–13 from FANCD2 N‐terminal constructs (nucleotides 1–1100) eliminates the binary interaction with Tip60 and the cellular apoptotic response; moreover, cells can stably express FANCD2 at high levels if Tip60 is depleted. The results indicate that FANCD2‐sponsored apoptosis requires an interaction with Tip60 and depends on Tip60.


Chromosoma | 1992

Replisome pausing in mutagenesis

Robb E. Moses; Anne Byford; James Hejna

E. coli cells containing a temperature-sensitivednaE mutation, in the α-subunit of holoenzyme DNA polymerase III, do not survive at the restrictive temperature. Such cells may survive in the presence of thepcbA1 mutation, an allele of thegyrB gene. Such survival is dependent on an active DNA polymerase I. Evidence indicates that DNA polymerase I interacts directly in the replisome (REP·A). Despite normal survival for cells using thepcbA replication pathway after some type of DNA damage, we have noted a failure of damage-induced mutagenesis. Here we present evidence supporting a model of replisome pausing in cells dependent upon thepcbA replication pathway. The model argues that the (REP·A) complex pauses longer at the site of the lesion, allowing excision repair to occur completely. In the normal replication pathway (REP·E) bypass of the lesion occurs, fixing the mutation.


Methods in Molecular Genetics | 1996

[1]Chemical mismatch cleavage

James Hejna; Markus Grompe; Robb E. Moses

Publisher Summary Mutation detection and analysis have become important technical steps in correlating candidate genes with genetic diseases. Chemical mismatch cleavage is a powerful method for scanning large regions of sequence, yet it has been relatively underutilized. The method was developed by Cotton and coworkers and the reagents and conditions used in Maxam–Gilbert DNA sequencing for the preferential cleavage of mismatched bases in heteroduplex DNA were systematically optimized. The reactions exploit the susceptibility of mismatched T and C residues in heteroduplex DNA to modification by osmium tetroxide and hydroxylamine, respectively, followed by piperidine cleavage at the site of the modified base. The chemical cleavage protocol has been streamlined so that all of the chemical modification and cleavage reactions can be run in a single day and the samples run on a sequencing gel the following day. Hydroxylamine, osmium tetroxide, and piperidine are all hazardous materials, and hence should be handled carefully to ensure safety. In the process, heteroduplexes are formed by combining probe with an excess of target, heat denaturing, and then reannealing. Siliconized 0.7-ml microfuge tubes are recommended for the chemical cleavage reactions. Frameshift mutations, either small deletions or insertions, are the most easily detected because they produce strong signals with both the hydroxylamine and OsO 4 reactions; in addition, when the results of the cleavage of coding and noncoding strands are compared, the corresponding sizes of the cleavage fragments should add up to that of the full-length probe. Whether the alteration is an insertion or a deletion cannot easily be determined by this method.

Collaboration


Dive into the James Hejna's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge