Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Donna J. O'Connell is active.

Publication


Featured researches published by Donna J. O'Connell.


Emerging lithographic technologies. Conference | 1999

Sub-100-nm lithographic imaging with an EUV 10x microstepper

John E. M. Goldsmith; Kurt W. Berger; Dan R. Bozman; Gregory Frank Cardinale; Daniel R. Folk; Craig C. Henderson; Donna J. O'Connell; Avijit K. Ray-Chaudhuri; Kenneth D. Stewart; Daniel A. Tichenor; Henry N. Chapman; Richard J. Gaughan; Russell M. Hudyma; Claude Montcalm; John S. Taylor; Jeffrey D. Williams; Kenneth A. Goldberg; Eric M. Gullikson; Patrick P. Naulleau; Jonathan L. Cobb

The capabilities of the EUV 10x microstepper have been substantially improved over the past year. The key enhancement was the development of a new projection optics system with reduced wavefront error, reduced flare, and increased numerical aperture. These optics and concomitant developments in EUV reticles and photoresists have enabled dramatic improvements in EUV imaging, illustrated by resolution of 70 nm dense lines and spaces (L/S). CD linearity has been demonstrated for dense L/S over the range 100 nm to 80 nm, both for the imaging layer and for subsequent pattern transfer. For a +/- 10 percent CD specification, we have demonstrated a process latitude of +/- micrometers depth of focus and 10 percent dose range for dense 100 nm L/S.


Emerging Lithographic Technologies VII | 2003

Lithographic flare measurements of EUV full-field projection optics

Sang Hun Lee; Patrick P. Naulleau; Christof G. Krautschik; Manish Chandhok; Henry N. Chapman; Donna J. O'Connell; Michael Goldstein

We demonstrate direct flare measurements of 4-mirror projection optics in the Engineering Test Stand (ETS) using a conventional resist clearing method (the Kirk method). Two extreme UV lithographic projection optics, one with higher flare than the other, have been characterized and the results compared. The measured results have also been compared to analytical calculations based on measured mirror roughness and the extended point spread function. Full-field flare across the 24 mm field width has been measured, and we have verified that flare is constant across the field for EUV lithography as predicted. Horizontal (H) and vertical (V) flare bias has been observed and the cause of the H-V flare bias has been investigated. The main cause has been identified to be anisotropic mirror polishing. Simulations with the 2D Power Spectral density function have confirmed the experimental results.


International Symposium on Optical Science and Technology | 2001

Initial results from the EUV engineering test stand

Daniel A. Tichenor; Avijit K. Ray-Chaudhuri; Sang Hun Lee; Henry N. Chapman; William C. Replogle; Kurt W. Berger; Richard H. Stulen; Glenn D. Kubiak; Leonard E. Klebanoff; John B. Wronosky; Donna J. O'Connell; Alvin H. Leung; Karen J. Jefferson; William P. Ballard; Layton C. Hale; Kenneth L. Blaedel; John S. Taylor; James A. Folta; Regina Soufli; Gary E. Sommargren; Donald W. Sweeney; Patrick P. Naulleau; Kenneth A. Goldberg; Eric M. Gullikson; Jeffrey Bokor; David T. Attwood; Uwe Mickan; Ralph M. Hanzen; Eric M. Panning; Pei-Yang Yan

The Engineering Test Stand (ETS) is an EUV lithography tool designed to demonstrate full-field EUV imaging and provide data required to accelerate production-tool development. Early lithographic results and progress on continuing functional upgrades are presented and discussed. In the ETS a source of 13.4 nm radiation is provided by a laser plasma source in which a Nd:YAG laser beam is focused onto a xenon- cluster target. A condenser system, comprised of multilayer-coated and grazing incidence mirrors, collects the EUV radiation and directs it onto a reflecting reticle. The resulting EUV illumination at the reticle and pupil has been measured and meets requirements for acquisition of first images. Tool setup experiments have been completed using a developmental projection system with (lambda) /14 wavefront error (WFE), while the assembly and alignment of the final projection system with (lambda) /24 WFE progresses in parallel. These experiments included identification of best focus at the central field point and characterization of imaging performance in static imaging mode. A small amount of astigmatism was observed and corrected in situ, as is routinely done in advanced optical lithographic tools. Pitch and roll corrections were made to achieve focus throughout the arc-shaped field of view. Scan parameters were identified by printing dense features with varying amounts of magnification and skew correction. Through-focus scanned imaging results, showing 100 nm isolated and dense features, will be presented. Phase 2 implementation goals for the ETS will also be discussed.


SPIE's 27th Annual International Symposium on Microlithography | 2002

Static microfield printing at the advanced light source with the ETS Set-2 optic

Patrick P. Naulleau; Kenneth A. Goldberg; Erik H. Anderson; David T. Attwood; Phillip J. Batson; Jeffrey Bokor; Paul Denham; Eric M. Gullikson; Bruce Harteneck; Brian Hoef; Keith H. Jackson; Deirdre L. Olynick; Senajith Rekawa; Farhad Salmassi; Kenneth L. Blaedel; Henry N. Chapman; Layton C. Hale; Regina Soufli; Donald W. Sweeney; John R. Taylor; Christopher C. Walton; Avijit K. Ray-Chaudhuri; Donna J. O'Connell; Richard H. Stulen; Daniel A. Tichenor; Charles W. Gwyn; Pei-Yang Yan; Guojing Zhang

While interferometry is routinely used for the characterization and alignment of lithographic optics, the ultimate performance metric for these optics is printing in photoresist. The comparison of lithographic imaging with that predicted from wavefront performance is also useful for verifying and improving the predictive power of wavefront metrology. To address these issues, static, small-field printing capabilities have been added to the EUV phase- shifting point diffraction interferometry implemented at the Advanced Light Source at Lawrence Berkeley National Laboratory. The combined system remains extremely flexible in that switching between interferometry and imaging modes can be accomplished in approximately two weeks.


23rd Annual International Symposium on Microlithography | 1998

Top surface imaging resists for EUV lithography

Craig C. Henderson; David R. Wheeler; Tim P. Pollagi; Donna J. O'Connell; John E. M. Goldsmith; Aaron Fisher; Gregory Frank Cardinale; John M. Hutchinson; Veena Rao

The strong attenuation of extreme UV (EUV) radiation by organic materials necessities the use of a thin layer imaging (TLI) process for EUV lithography. Several TLI processes have been identified for potential use for EUVL, and the common theme in these approaches is the transfer of the aerial image to a thin layer of refractory-containing material, which is then used as a dry O2 etch mask during a subsequent pattern transfer to the device layer. One TLI process that has been extensively examined for EUVL is the silylated top-surface imaging (TSI) technology, which is discussed in this paper. Using a new disilane silylation reagent, dimethylaminodimethyldisilane (DMDS) and 13.4 nm exposure, the TSI process has been sued to print 100 nm lines and spaces at equal pitch and 70 nm lines and spaces at a higher 1:2 pitch. The line edge roughness for the printed lines has been determined using a custom image analysis program and, as expected, varies with the particular EUV exposure system and numerical aperture. Exposures done with 193 nm lithography and the TSI process using DMDS are also shown for comparison to the EUV results.


Emerging Lithographic Technologies VII | 2003

Lithographic characterization of improved projection optics in the EUVL engineering test stand

Donna J. O'Connell; Sang Hun Lee; William P. Ballard; Daniel A. Tichenor; Louis J. Bernardez; Steven J. Haney; Terry A. Johnson; Pamela K. Barr; Alvin H. Leung; Karen L. Jefferson; William C. Replogle; John E. M. Goldsmith; Henry N. Chapman; Patrick P. Naulleau; Stefan Wurm; Eric M. Panning

Static and scanned images of 100nm dense features for a developmental set of l/14 optics (projection optics box # 1, POB 1) in the Engineering Test Stand (ETS) were successfully obtained with various LPP source powers last year. The ETS with POB1 has been used to understand initial system performance and lithographic learning. Since then, numerous system upgrades have been made to improve ETS lithographic performance to meet or exceed the original design objectives. The most important upgrade is the replacement of POB 1 with an improved projection optics system, POB2, having lower figure error (l/20 rms wavefront error) and lower flare. Both projection optics boxes are a four-mirror design with a 0.1 numerical aperture. Scanned 70-nm dense features have been successfully printed using POB2. Aerial image contrast measurements have been made using the resist clearing method. The results are in good agreement to previous POB2 aerial image contrast measurements at the subfield exposure station (SES) at Lawrence Berkeley National Laboratory. For small features the results deviate from the modeling predictions due to the inherent resolution limit of the resist. The intrinsic flare of POB2 was also characterized. The experimental results were in excellent agreement with modeling predictions. As predicted, the flare in POB2 is less than 20% for 2μm features, which is two times lower than the flare in POB1. EUV flare is much easier to compensate for than its DUV counterpart due to its greater degree of uniformity and predictability. The lithographic learning obtained from the ETS will be used in the development of EUV High Volume Manufacturing tools. This paper describes the ETS tool ETS tool setup, both static and scanned, that was required after the installation of POB2. The paper will also describe the lithographic characterization of POB2 in the ETS and cmpare those results to the lithographic results obtained last year with POB1.


Emerging Lithographic Technologies VII | 2003

System and process learning in a full-field, high-power EUVL alpha tool

William P. Ballard; Daniel A. Tichenor; Donna J. O'Connell; Luis J. Bernardez; Robert E. Lafon; Richard J. Anderson; Alvin H. Leung; Kenneth A. Williams; Steven J. Haney; Yon E. Perras; Karen L. Jefferson; Therese L. Porter; Daniel L. Knight; Pamela K. Barr; James L. Van De Vreugde; Richard H. Campiotti; Mark D. Zimmerman; Terry A. Johnson; Leonard E. Klebanoff; Philip A. Grunow; Samuel Graham; Dean A. Buchenauer; William C. Replogle; Tony G. Smith; John B. Wronosky; Joel R. Darnold; Kenneth L. Blaedel; Henry N. Chapman; John S. Taylor; Layton C. Hale

Full-field imaging with a developmental projection optic box (POB 1) was successfully demonstrated in the alpha tool Engineering Test Stand (ETS) last year. Since then, numerous improvements, including laser power for the laser-produced plasma (LPP) source, stages, sensors, and control system have been made. The LPP has been upgraded from the 40 W LPP cluster jet source used for initial demonstration of full-field imaging to a high-power (1500 W) LPP source with a liquid Xe spray jet. Scanned lithography at various laser drive powers of >500 W has been demonstrated with virtually identical lithographic performance.


Emerging Lithographic Technologies VII | 2003

Effect of polymer molecular weight on AFM polymer aggregate size and LER of EUV resists

Charlotte Cutler; Joseph F. Mackevich; Jieming Li; Donna J. O'Connell; Gregory Frank Cardinale; Robert L. Brainard

The relationships between polymer molecular weight, surface roughness measured by Atomic Force Microscopy (AFM), and EUV line edge roughness (LER), were studied in four separate rounds of experiments. In Round 1, EUV-2D (XP98248B) was prepared with seven levels of added base. These seven resists were patterned using EUV lithography; the LER was determined using 100 nm dense lines. The LER of the seven resist dramatically decreases with increasing level of base. These LER results were compared with the surface roughness of these resists after development for unexposed and DUV (248 nm) exposed surfaces. In Rounds 2-4, we evaluated three sets of EUV-2D type resists prepared with polymers having Mw of 2.9, 4.9, 6.1, 9.1, 16.1, and 33.5 Kg/mole. EUV LER and surface roughness were determined for each resist. In Round 2, the polymers were substituted into the EUV-2D resist matrix with no other formulation changes. In Round 3, the PAG level was decreased with increasing polymer Mw, to obtain a constant unexposed fill thickness loss (UFTL) for all six resists. In Round 4, both PAG level and base level were modified to yield six resists with similar sensitivity and EFTL. These experiments have led to conclusion about the impact of polymer molecular weight on imaging LER and AFM surface roughness, as well as elucidating the relationship between all three.


SPIE's 27th Annual International Symposium on Microlithography | 2002

Lithographic evaluation of the EUV engineering test stand

Sang Hun Lee; Daniel A. Tichenor; William P. Ballard; Luis J. Bernardez; John E. M. Goldsmith; Steven J. Haney; Karen L. Jefferson; Terry A. Johnson; Alvin H. Leung; Donna J. O'Connell; William C. Replogle; John B. Wronosky; Kenneth L. Blaedel; Patrick P. Naulleau; Kenneth A. Goldberg; Eric M. Gullikson; Henry N. Chapman; Stefan Wurm; Eric M. Panning; Pei-Yang Yan; Guojing Zhang; J. E. Bjorkholm; Glenn D. Kubiak; Donald W. Sweeney; David T. Attwood; Charles W. Gwyn

Static and scanned images of 100 nm dense features were successfully obtained with a developmental set of projection optics and a 500W drive laser laser-produced-plasma (LPP) source in the Engineering Test Stand (ETS). The ETS, configured with POB1, has been used to understand system performance and acquire lithographic learning which will be used in the development of EUV high volume manufacturing tools. The printed static images for dense features below 100 nm with the improved LPP source are comparable to those obtained with the low power LPP source, while the exposure time was decreased by more than 30x. Image quality comparisons between the static and scanned images with the improved LPP source are also presented. Lithographic evaluation of the ETS includes flare and contrast measurements. By using a resist clearing method, the flare and aerial image contrast of POB1 have been measured, and the results have been compared to analytical calculations and computer simulations.


Emerging Lithographic Technologies VII | 2003

Calibration of EUV 2D photoresist simulation parameters for accurate predictive modeling

Stewart A. Robertson; Patrick P. Naulleau; Donna J. O'Connell; Kevin McDonald; Todd M. Delano; Kenneth A. Goldberg; Steven G. Hansen; Kirk W. Brown; Robert Brainard

In this work simulation parameters are developed for Shipley EUV-2D photoresist under exposure at 13.4nm. Baseline parameter values are determined from theory and experiment. The simulation parameters were tuned from these values using a commercial automatic parameter optimisation software to match simulation results to experimental lithographic data generated using the ETS Set-2 projection optics in the subfield exposure station (SES). In an attempt to maximise parameter accuracy the experimental data set used included 4 different feature sizes and known non-idealities of the exposure set-up were accounted for (mask errors, lens aberrations and metrology bias). The resulting model described the experimental data very well with only a low level of residual error.

Collaboration


Dive into the Donna J. O'Connell's collaboration.

Top Co-Authors

Avatar

Patrick P. Naulleau

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Daniel A. Tichenor

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

John E. M. Goldsmith

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenneth A. Goldberg

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Alvin H. Leung

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Glenn D. Kubiak

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

John B. Wronosky

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

John S. Taylor

Lawrence Livermore National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge