Dunxin Hu
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dunxin Hu.
Geophysical Research Letters | 2006
Jiwei Tian; Qingxuan Yang; Xinfeng Liang; Lingling Xie; Dunxin Hu; Fan Wang; Tangdong Qu
Using recently collected current and hydrographic data, we provide a high resolution picture of the subinertial flow and estimate the volume transport through the Luzon Strait. The distribution of the subinertial flow shows a strong westward flow around 100 m in the northern part of the Luzon Strait, while the eastward flow is confined to the deeper layers, mostly at depths around 1000 m. The total volume transport is estimated to be 6 +/- 3 Sv during the period of observations from October 4 to 16, 2005. The observations also confirm that the Luzon Strait transport has a sandwiched vertical structure. The net westward volume transport in the deep (> 1500 m) layer of the Luzon Strait reaches 2 Sv.
Journal of Geophysical Research | 2006
Dongliang Yuan; Weiqing Han; Dunxin Hu
[ 1] Satellite ocean color, sea surface temperature, and altimeter data are used to study the surface Kuroshio path in the Luzon Strait area. The results suggest that the dominant path of surface Kuroshio intrusion in winter is a direct route from northeast of Luzon to southwest of Taiwan and then westward along the continental slope of northern South China Sea. Anticyclonic intrusions of the Kuroshio in the Luzon Strait area are observed during less than 30% of the time on average and in all four seasons of the year. Winter is the most favorable season for the formation of the anticyclonic intrusions. However, the Kuroshio is observed to deviate from the dominant path during only a little over one third of the wintertime on average. The loop currents of the Kuroshio, which feature prominent inflow-outflow currents in the Luzon Strait during the anticyclonic intrusions, are observed only occasionally, with more episodes in summer than in winter. The observation of more frequent loop currents of the Kuroshio in summer than in winter is a revision to the existing conclusion. These results demonstrate that the anticyclonic intrusion of the Kuroshio is a transient phenomenon rather than a persistent circulation pattern in the Luzon Strait area as suggested by some of the existing numerical model simulations. The growth and decay of the anticyclonic intrusions of the Kuroshio are closely related to the passages and evolution of mesoscale eddies in the Luzon Strait area. Each anticyclonic intrusion event lasts for a few weeks. Its termination sometimes results in a detached anticyclonic eddy propagating to the western basin along the continental slope of the northern South China Sea.
Nature | 2015
Dunxin Hu; Lixin Wu; Wenju Cai; Alex Sen Gupta; Alexandre Ganachaud; Bo Qiu; Arnold L. Gordon; Xiaopei Lin; Zhaohui Chen; Shijian Hu; Guojian Wang; Qingye Wang; Janet Sprintall; Tangdong Qu; Yuji Kashino; Fan Wang; William S. Kessler
Pacific Ocean western boundary currents and the interlinked equatorial Pacific circulation system were among the first currents of these types to be explored by pioneering oceanographers. The widely accepted but poorly quantified importance of these currents—in processes such as the El Niño/Southern Oscillation, the Pacific Decadal Oscillation and the Indonesian Throughflow—has triggered renewed interest. Ongoing efforts are seeking to understand the heat and mass balances of the equatorial Pacific, and possible changes associated with greenhouse-gas-induced climate change. Only a concerted international effort will close the observational, theoretical and technical gaps currently limiting a robust answer to these elusive questions.
Geophysical Research Letters | 2007
Dongliang Yuan; Weiqing Han; Dunxin Hu
Anti-cyclonic eddies northwest of Luzon of the Philippines in summer-fall are identified in the merged data products of satellite altimeters of Topex/Poseidon, Jason-1 and European Research Satellites. The generation and propagation of the anti-cyclonic eddies, which are confirmed by satellite ocean color data, are found to be a seasonal phenomenon that is phase-locked to the onset of the southwesterly monsoon and the relaxation of the cyclonic wind curl in the northeastern South China Sea. The eddies originate from northwest of Luzon in summer, move across the northeastern South China Sea to reach the China continental slope in fall, and propagate southwestward along the continental slope in fall-winter, inducing shelfbreak current variations in the western South China Sea in fall-winter. The anti-cyclonic eddy discovered by Li et al. (1998) in the northern South China Sea is found to originate from northwest of Luzon and carry primarily the South China Sea waters. It does not appear to be an eddy shed from the Kuroshio in the Luzon Strait area as alluded by Li et al. (1998) and others.
Journal of Geophysical Research | 2012
Tangdong Qu; Tzu Ling Chiang; Chau Ron Wu; Pierre Dutrieux; Dunxin Hu
Analysis of results from an eddy-resolving general circulation model showed two subsurface velocity cores in the mean within the depth range between 400 and 1000 m below the Mindanao Current (MC). One is confined to the inshore edge at about 126.8 degrees E and connected with the Sulawesi Sea. The other takes place somewhat offshore around 127.7 degrees E, being closely related to the intrusion of South Pacific water. Both cores are referred to as the Mindanao Undercurrent (MUC). The MC/MUC is approximately a geostrophic flow, except on the inshore edge of the MUC where up to 50% of the mean flow can be explained by ageostrophic dynamics. In contrast with the well-defined southward flowing MC, the MUC is of high velocity variance relative to the mean. Empirical orthogonal function (EOF) analysis shows that approximately 60% of the total velocity variance is associated with two meandering modes, with their major signatures in the subthermocline. The dominant time scale of variability is 50-100 days. An ensemble of these meso-scale fluctuations provides a northward freshwater flux on the offshore edge of the Philippine coast, which to a certain extent explains why water of South Pacific origin appears to extend farther northward than the mean MUC. In the offshore velocity core of the MUC, for example, eddy induced freshwater flux is equivalent to a mean flow of about 0.3 m s(-1) in the density range between 26.9 and 27.3 kg m(-3), which is greater than the mean current by a factor of 6.
Journal of Physical Oceanography | 2013
Dunxin Hu; Shijian Hu; Lixin Wu; Lei Li; Linlin Zhang; Xinyuan Diao; Zhaohui Chen; Yuanlong Li; Fan Wang; Dongliang Yuan
AbstractThe Luzon Undercurrent (LUC) was discovered about 20 years ago by geostrophic calculation from conductivity–temperature–depth (CTD) data. But it was not directly measured until 2010. From November 2010 to July 2011, the LUC was first directly measured by acoustic Doppler current profiler (ADCP) from a subsurface mooring at 18.0°N, 122.7°E to the east of Luzon Island. A number of new features of the LUC were identified from the measurements of the current. Its depth covers a range from 400 m to deeper than 700 m. The observed maximum velocity of the LUC, centered at about 650 m, could exceed 27.5 cm s−1, four times stronger than the one derived from previous geostrophic calculation with hydrographic data. According to the time series available, the seasonality of the LUC strength is in winter > summer > spring. Significant intraseasonal variability (ISV; 70–80 days) of the LUC is exposed. Evidence exists to suggest that a large portion of the intraseasonal variability in the LUC is related to the w...
International Journal of Climatology | 1997
Tangdong Qu; Gary Meyers; J. Stuart Godfrey; Dunxin Hu
This study provides a description of the large-scale aspects of upper ocean dynamics and its role in balancing the annual mean surface heat budget in the tropical western Pacific Ocean, using the results from an ocean general circulation model (GCM) combined with existing observations. A comparison with observations shows that the model simulates major aspects of the observed upper-layer thermal structure and circulation, and it has a reasonable representation of net surface heat flux. The heat flux in the model is of the order of 10 W m−2 into the ocean near the Equator and less at high latitudes, which supports the previous inference that fluxes in the region are overestimated in most climatologies. The annual mean surface heat budget of the model averaged over a large region (20°S–20°N and 110°E–160°E) indicates that heat is generally transported downward to the deeper levels by vertical motion and mixing, which agrees with earlier studies. However, close inspection of six subregions within the large region indicates that different mechanisms are balancing the surface heat budget in different subregions. Horizontal advection is important in some subregions. Upper-layer convergence induced by the equatorward western boundary currents in the region of the North Equatorial Countercurrent (NECC) is equivalent to a surface heat flux of 17 W m−2 into the ocean, about 5 W m−2 larger than the net exchange of heat between ocean and atmosphere in the model. This provides a reasonable explanation for why the warmest (>28°C) water of the global oceans exists in the tropical western Pacific and an independent evidence for Wyrtki’s hypothesis of accumulation of heat in the region. The residence time of the warm pool water is about 8 months in the model, shorter by a factor of about two than Wyrtki’s estimate of 1·3 years. ©1997 by the Royal Meteorological Society. Int. J. Climatol., 17: 711–724 (1997) (No. of Figures: 9. No. of Tables: 1. No. of Refs: 40.)
Journal of Geophysical Research | 2015
Fan Wang; Nan Zang; Yuanlong Li; Dunxin Hu
The subsurface countercurrents in the Philippine Sea and their roles in water mass transportation have been reported in previous studies. Their existence is still controversial, and the underlying dynamics remains unclear. This study investigates the climatological structures and relationships of three subsurface countercurrents, namely the Mindanao Undercurrent (MUC), the Luzon Undercurrent (LUC), and the North Equatorial Undercurrent (NEUC), using recently available hydrographic and satellite altimeter data. The three subsurface currents below and opposite to the surface currents are confirmed by multisections analysis. The MUC, as traced at zonal sections between 6.5 degrees N and 10.5 degrees N, shows two northward velocity cores, both with maximum speed larger than 10 cm s(-1). The LUC exhibits an obscure core with southward velocity larger than 2 cm s(-1) under the Kuroshio at 18 degrees N and 16.25 degrees N sections. The eastward flowing NEUC also has two separated cores at 128.2 degrees E and 130 degrees E sections with velocity larger than 1 cm s(-1). Analyses of -S relationship suggest that the southern part of NEUC is fed by the MUC with the South Pacific water and South/North Pacific water mixture, while the northern NEUC is likely a destiny of the North Pacific water carried by the LUC. Tightly associated with the opposite horizontal gradients between sea surface height (SSH) and the depth of thermocline (DTC), the subsurface countercurrents exist in connected zones where the baroclinic adjustment below the thermocline overcomes the barotropic forcing at the sea surface, which indicates the dynamical linkages among the three subsurface countercurrents.
Journal of Geophysical Research | 2014
Qingye Wang; Fangguo Zhai; Fujun Wang; Dunxin Hu
The intraseasonal variability (ISV) of the subthermocline current east of Mindanao was characterized and shown to be caused by the activity of subthermocline eddies using mooring observations at 8 degrees N, 127.03 degrees E and a high-resolution numerical model. The ISV of the observed current east of Mindanao is vertically coherent in the upper 940 m but is significantly intensified below the thermocline. The ISV amplitude (8 cm s(-1)) of zonal subthermocline current is comparable with that (11 cm s(-1)) of the meridional current, revealing the nature of active eddies. The ISV of the subthermocline current was caused by the subthermocline eddies from three different pathways. The subthermocline eddies propagating along approximately 10 degrees N-11 degrees N contributed more to the ISV of the subthermocline current east of Mindanao than did those eddies propagating westward along 8 degrees N or northwestward from the New Guinea coast. Subthermocline eddies mainly exist south of the bifurcation latitude of the North Equatorial Current in the western tropical Pacific, and their generation and propagation mechanisms are briefly discussed.
Journal of Geophysical Research | 2011
Zhao Jing; Lixin Wu; Lei Li; Chengyan Liu; Xi Liang; Zhaohui Chen; Dunxin Hu; Qingyu Liu
Both spatial and seasonal variation of turbulent diapycnal mixing in the subtropical northwestern Pacific are evaluated by employing a fine-scale parameterization method based on profiles of potential density, which are obtained from CTD measurements during our recent hydrographic surveys implemented by the China National Key Basic Research Project from 2008 to 2010 and the World Ocean Circulation Experiment. Over smooth seafloor, the value of diffusivity away from the boundary is comparable with the values observed in the stratified midlatitude ocean interior, i.e., O (10(-5) m(2) s(-1)). On the other hand, enhanced diapycnal mixing, i.e., O (10(-4) m(2) s(-1)) or larger has been found over rough topography such as the Central Basin Trough, Okidaito Ridge, the origin of the Kuroshio Current, and especially Luzon Strait, which might result from dissipation of baroclinic energy generated when barotropic tides rub over rough topography. Over flat bathymetry, mixing is probably stirred by the wind work on near inertial motions in the upper 600 m and enhanced downward propagating energy has been found in the presence of anticyclonic eddies, which points to the important role of anticyclonic eddies in enhancing the diapycnal mixing at greater depth. The diffusivity also displays a distinct seasonal variation with strong (weak) mixing corresponding to strong (weak) wind-input energy in winter (summer), which, however, is only confined to upper 600 m. This is different from the midlatitude northwestern Pacific, where seasonality of diffusivity can be found at 1500-m depth.