Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eiichi Shoguchi is active.

Publication


Featured researches published by Eiichi Shoguchi.


Nature | 2011

Using the Acropora digitifera genome to understand coral responses to environmental change

Chuya Shinzato; Eiichi Shoguchi; Takeshi Kawashima; Mayuko Hamada; Kanako Hisata; Makiko Tanaka; Manabu Fujie; Mayuki Fujiwara; Ryo Koyanagi; Tetsuro Ikuta; Asao Fujiyama; David J. Miller; Nori Satoh

Despite the enormous ecological and economic importance of coral reefs, the keystone organisms in their establishment, the scleractinian corals, increasingly face a range of anthropogenic challenges including ocean acidification and seawater temperature rise. To understand better the molecular mechanisms underlying coral biology, here we decoded the approximately 420-megabase genome of Acropora digitifera using next-generation sequencing technology. This genome contains approximately 23,700 gene models. Molecular phylogenetics indicate that the coral and the sea anemone Nematostella vectensis diverged approximately 500 million years ago, considerably earlier than the time over which modern corals are represented in the fossil record (∼240 million years ago). Despite the long evolutionary history of the endosymbiosis, no evidence was found for horizontal transfer of genes from symbiont to host. However, unlike several other corals, Acropora seems to lack an enzyme essential for cysteine biosynthesis, implying dependency of this coral on its symbionts for this amino acid. Corals inhabit environments where they are frequently exposed to high levels of solar radiation, and analysis of the Acropora genome data indicates that the coral host can independently carry out de novo synthesis of mycosporine-like amino acids, which are potent ultraviolet-protective compounds. In addition, the coral innate immunity repertoire is notably more complex than that of the sea anemone, indicating that some of these genes may have roles in symbiosis or coloniality. A number of genes with putative roles in calcification were identified, and several of these are restricted to corals. The coral genome provides a platform for understanding the molecular basis of symbiosis and responses to environmental changes.


DNA Research | 2012

Draft Genome of the Pearl Oyster Pinctada fucata: A Platform for Understanding Bivalve Biology

Takeshi Takeuchi; Takeshi Kawashima; Ryo Koyanagi; Fuki Gyoja; Makiko Tanaka; Tetsuro Ikuta; Eiichi Shoguchi; Mayuki Fujiwara; Chuya Shinzato; Kanako Hisata; Manabu Fujie; Takeshi Usami; Kiyohito Nagai; Kaoru Maeyama; Kikuhiko Okamoto; Hideo Aoki; Takashi Ishikawa; Tetsuji Masaoka; Atushi Fujiwara; Kazuyoshi Endo; Hirotoshi Endo; Hiromichi Nagasawa; Shigeharu Kinoshita; Shuichi Asakawa; Shugo Watabe; Nori Satoh

The study of the pearl oyster Pinctada fucata is key to increasing our understanding of the molecular mechanisms involved in pearl biosynthesis and biology of bivalve molluscs. We sequenced ∼1150-Mb genome at ∼40-fold coverage using the Roche 454 GS-FLX and Illumina GAIIx sequencers. The sequences were assembled into contigs with N50 = 1.6 kb (total contig assembly reached to 1024 Mb) and scaffolds with N50 = 14.5 kb. The pearl oyster genome is AT-rich, with a GC content of 34%. DNA transposons, retrotransposons, and tandem repeat elements occupied 0.4, 1.5, and 7.9% of the genome, respectively (a total of 9.8%). Version 1.0 of the P. fucata draft genome contains 23 257 complete gene models, 70% of which are supported by the corresponding expressed sequence tags. The genes include those reported to have an association with bio-mineralization. Genes encoding transcription factors and signal transduction molecules are present in numbers comparable with genomes of other metazoans. Genome-wide molecular phylogeny suggests that the lophotrochozoan represents a distinct clade from ecdysozoans. Our draft genome of the pearl oyster thus provides a platform for the identification of selection markers and genes for calcification, knowledge of which will be important in the pearl industry.


Zoological Science | 2005

An Integrated Database of the Ascidian, Ciona intestinalis: Towards Functional Genomics

Yutaka Satou; Takeshi Kawashima; Eiichi Shoguchi; Akie Nakayama; Nori Satoh

Abstract An integrated genome database is essential for future studies of functional genomics. In this study, we update cDNA and genomic resources of the ascidian, Ciona intestinalis, and provide an integrated database of the genomic and cDNA data by extending a database published previously. The updated resources include over 190,000 ESTs (672,396 in total together with the previous ESTs) and over 1,000 full-insert sequences (6,773 in total). In addition, results of mapping information of the determined scaffolds onto chromosomes, ESTs from a full-length enriched cDNA library for indication of precise 5′-ends of genes, and comparisons of SNPs and indels among different individuals are integrated into this database, all of these results being reported recently. These advances continue to increase the utility of Ciona intestinalis as a model organism whilst the integrated database will be useful for researchers in comparative and evolutionary genomics.


Development Genes and Evolution | 2003

A genomewide survey of developmentally relevant genes in Ciona intestinalis X Genes for cell junctions and extracellular matrix

Yasunori Sasakura; Eiichi Shoguchi; Naohito Takatori; Shuichi Wada; Ian A. Meinertzhagen; Yutaka Satou; Nori Satoh

Cell junctions and the extracellular matrix (ECM) are crucial components in intercellular communication. These systems are thought to have become highly diversified during the course of vertebrate evolution. In the present study, we have examined whether the ancestral chordate already had such vertebrate systems for intercellular communication, for which we have searched the genome of the ascidian Ciona intestinalis. From this molecular perspective, the Ciona genome contains genes that encode protein components of tight junctions, hemidesmosomes and connexin-based gap junctions, as well as of adherens junctions and focal adhesions, but it does not have those for desmosomes. The latter omission is curious, and the ascidian type-I cadherins may represent an ancestral form of the vertebrate type-I cadherins and desmosomal cadherins, while Ci-Plakin may represent an ancestral protein of the vertebrate desmoplakins and plectins. If this is the case, then ascidians may have retained ancestral desmosome-like structures, as suggested by previous electron-microscopic observations. In addition, ECM genes that have been regarded as vertebrate-specific were also found in the Ciona genome. These results suggest that the last common ancestor shared by ascidians and vertebrates, the ancestor of the entire chordate clade, had essentially the same systems of cell junctions as those in extant vertebrates. However, the number of such genes for each family in the Ciona genome is far smaller than that in vertebrate genomes. In vertebrates these ancestral cell junctions appear to have evolved into more diverse, and possibly more complex, forms, compared with those in their urochordate siblings.


Nature | 2015

Hemichordate genomes and deuterostome origins

Oleg Simakov; Takeshi Kawashima; Ferdinand Marlétaz; Jerry Jenkins; Ryo Koyanagi; Therese Mitros; Kanako Hisata; Jessen Bredeson; Eiichi Shoguchi; Fuki Gyoja; Jia-Xing Yue; Yi-Chih Chen; Robert M. Freeman; Akane Sasaki; Tomoe Hikosaka-Katayama; Atsuko Sato; Manabu Fujie; Kenneth W. Baughman; Judith Levine; Paul Gonzalez; Christopher B. Cameron; Jens H. Fritzenwanker; Ariel M. Pani; Hiroki Goto; Miyuki Kanda; Nana Arakaki; Shinichi Yamasaki; Jiaxin Qu; Andrew Cree; Yan Ding

Acorn worms, also known as enteropneust (literally, ‘gut-breathing’) hemichordates, are marine invertebrates that share features with echinoderms and chordates. Together, these three phyla comprise the deuterostomes. Here we report the draft genome sequences of two acorn worms, Saccoglossus kowalevskii and Ptychodera flava. By comparing them with diverse bilaterian genomes, we identify shared traits that were probably inherited from the last common deuterostome ancestor, and then explore evolutionary trajectories leading from this ancestor to hemichordates, echinoderms and chordates. The hemichordate genomes exhibit extensive conserved synteny with amphioxus and other bilaterians, and deeply conserved non-coding sequences that are candidates for conserved gene-regulatory elements. Notably, hemichordates possess a deuterostome-specific genomic cluster of four ordered transcription factor genes, the expression of which is associated with the development of pharyngeal ‘gill’ slits, the foremost morphological innovation of early deuterostomes, and is probably central to their filter-feeding lifestyle. Comparative analysis reveals numerous deuterostome-specific gene novelties, including genes found in deuterostomes and marine microbes, but not other animals. The putative functions of these genes can be linked to physiological, metabolic and developmental specializations of the filter-feeding ancestor.


eLife | 2016

Comparative genomics explains the evolutionary success of reef-forming corals

Debashish Bhattacharya; Shobhit Agrawal; Manuel Aranda; Sebastian Baumgarten; Mahdi Belcaid; Jeana L. Drake; Douglas H. Erwin; Sylvain Forêt; Ruth D. Gates; David F. Gruber; Bishoy Kamel; Michael P. Lesser; Oren Levy; Yi Jin Liew; Matthew D. MacManes; Tali Mass; Mónica Medina; Shaadi Mehr; Eli Meyer; Dana C. Price; Hollie M. Putnam; Huan Qiu; Chuya Shinzato; Eiichi Shoguchi; Alexander J. Stokes; Sylvie Tambutté; Dan Tchernov; Christian R. Voolstra; Nicole E. Wagner; Charles W. Walker

Transcriptome and genome data from twenty stony coral species and a selection of reference bilaterians were studied to elucidate coral evolutionary history. We identified genes that encode the proteins responsible for the precipitation and aggregation of the aragonite skeleton on which the organisms live, and revealed a network of environmental sensors that coordinate responses of the host animals to temperature, light, and pH. Furthermore, we describe a variety of stress-related pathways, including apoptotic pathways that allow the host animals to detoxify reactive oxygen and nitrogen species that are generated by their intracellular photosynthetic symbionts, and determine the fate of corals under environmental stress. Some of these genes arose through horizontal gene transfer and comprise at least 0.2% of the animal gene inventory. Our analysis elucidates the evolutionary strategies that have allowed symbiotic corals to adapt and thrive for hundreds of millions of years. DOI: http://dx.doi.org/10.7554/eLife.13288.001


Molecular Biology and Evolution | 2013

The Complex NOD-Like Receptor Repertoire of the Coral Acropora digitifera Includes Novel Domain Combinations

Mayuko Hamada; Eiichi Shoguchi; Chuya Shinzato; Takeshi Kawashima; David J. Miller; Nori Satoh

Innate immunity in corals is of special interest not only in the context of self-defense but also in relation to the establishment and collapse of their obligate symbiosis with dinoflagellates of the genus Symbiodinium. In innate immunity system of vertebrates, approximately 20 tripartite nucleotide oligomerization domain (NOD)-like receptor proteins that are defined by the presence of a NAIP, CIIA, HET-E and TP1 (NACHT) domain, a C-terminal leucine-rich repeat (LRR) domain, and one of three types of N-terminal effector domain, are known to function as the primary intracellular pattern recognition molecules. Surveying the coral genome revealed not only a larger number of NACHT- and related domain nucleotide-binding adaptor shared by APAF-1, R proteins, and CED-4 (NB-ARC)-encoding loci (~500) than in other metazoans but also surprising diversity of domain combinations among the coral NACHT/NB-ARC-containing proteins; N-terminal effector domains included the apoptosis-related domains caspase recruitment domain (CARD), death effector domain (DED), and Death, and C-terminal repeat domains included LRRs, tetratricopeptide repeats, ankyrin repeats, and WD40 repeats. Many of the predicted coral proteins that contain a NACHT/NB-ARC domain also contain a glycosyl transferase group 1 domain, a novel domain combination first found in metazoans. Phylogenetic analyses suggest that the NACHT/NB-ARC domain inventories of various metazoan lineages, including corals, are largely products of lineage-specific expansions. Many of the NACHT/NB-ARC loci are organized in pairs or triplets in the Acropora genome, suggesting that the large coral NACHT/NB-ARC repertoire has been generated at least in part by tandem duplication. In addition, shuffling of N-terminal effector domains may have occurred after expansions of specific NACHT/NB-ARC-repeat domain types. These results illustrate the extraordinary complexity of the innate immune repertoire of corals, which may in part reflect adaptive evolution to a symbiotic lifestyle in a uniquely complex and challenging environment.


Genome Biology and Evolution | 2014

Massive Gene Transfer and Extensive RNA Editing of a Symbiotic Dinoflagellate Plastid Genome

Sutada Mungpakdee; Chuya Shinzato; Takeshi Takeuchi; Takeshi Kawashima; Ryo Koyanagi; Kanako Hisata; Makiko Tanaka; Hiroki Goto; Manabu Fujie; Senjie Lin; Nori Satoh; Eiichi Shoguchi

Genome sequencing of Symbiodinium minutum revealed that 95 of 109 plastid-associated genes have been transferred to the nuclear genome and subsequently expanded by gene duplication. Only 14 genes remain in plastids and occur as DNA minicircles. Each minicircle (1.8–3.3 kb) contains one gene and a conserved noncoding region containing putative promoters and RNA-binding sites. Nine types of RNA editing, including a novel G/U type, were discovered in minicircle transcripts but not in genes transferred to the nucleus. In contrast to DNA editing sites in dinoflagellate mitochondria, which tend to be highly conserved across all taxa, editing sites employed in DNA minicircles are highly variable from species to species. Editing is crucial for core photosystem protein function. It restores evolutionarily conserved amino acids and increases peptidyl hydropathy. It also increases protein plasticity necessary to initiate photosystem complex assembly.


Developmental Biology | 2011

Development and evolution of the lateral plate mesoderm: Comparative analysis of amphioxus and lamprey with implications for the acquisition of paired fins

Koh Onimaru; Eiichi Shoguchi; Shigeru Kuratani; Mikiko Tanaka

Possession of paired appendages is regarded as a novelty that defines crown gnathostomes and allows sophisticated behavioral and locomotive patterns. During embryonic development, initiation of limb buds in the lateral plate mesoderm involves several steps. First, the lateral plate mesoderm is regionalized into the cardiac mesoderm (CM) and the posterior lateral plate mesoderm (PLPM). Second, in the PLPM, Hox genes are expressed in a collinear manner to establish positional values along the anterior-posterior axis. The developing PLPM splits into somatic and splanchnic layers. In the presumptive limb field of the somatic layer, expression of limb initiation genes appears. To gain insight into the evolutionary sequence leading to the emergence of paired appendages in ancestral vertebrates, we examined the embryonic development of the ventral mesoderm in the cephalochordate amphioxus Branchiostoma floridae and of the lateral plate mesoderm in the agnathan lamprey Lethenteron japonicum, and studied the expression patterns of cognates of genes known to be expressed in these mesodermal layers during amniote development. We observed that, although the amphioxus ventral mesoderm posterior to the pharynx was not regionalized into CM and posterior ventral mesoderm, the lateral plate mesoderm of lampreys was regionalized into CM and PLPM, as in gnathostomes. We also found nested expression of two Hox genes (LjHox5i and LjHox6w) in the PLPM of lamprey embryos. However, histological examination showed that the PLPM of lampreys was not separated into somatic and splanchnic layers. These findings provide insight into the sequential evolutionary changes that occurred in the ancestral lateral plate mesoderm leading to the emergence of paired appendages.


Evolution & Development | 2012

Heterochronic activation of VEGF signaling and the evolution of the skeleton in echinoderm pluteus larvae.

Yoshiaki Morino; Hiroyuki Koga; Kazunori Tachibana; Eiichi Shoguchi; Masato Kiyomoto; Hiroshi Wada

The evolution of the echinoderm larval skeleton was examined from the aspect of interactions between skeletogenic mesenchyme cells and surrounding epithelium. We focused on vascular endothelial growth factor (VEGF) signaling, which was reported to be essential for skeletogenesis in sea urchin larvae. Here, we examined the expression patterns of vegf and vegfr in starfish and brittle stars. During starfish embryogenesis, no expression of either vegfr or vegf was detected, which contrast with previous reports on the expression of starfish homologs of sea urchin skeletogenic genes, including Ets, Tbr, and Dri. In later stages, when adult skeletogenesis commenced, vegfr and vegf expression were upregulated in skeletogenic cells and in the adjacent epidermis, respectively. These expression patterns suggest that heterochronic activation of VEGF signaling is one of the key molecular evolutionary steps in the evolution of the larval skeleton. The absence of vegf or vegfr expression during early embryogenesis in starfish suggests that the evolution of the larval skeleton requires distinct evolutionary changes, both in mesoderm cells (activation of vegfr expression) and in epidermal cells (activation of vegf expression). In brittle stars, which have well‐organized skeletons like the sea urchin, vegfr and vegf were expressed in the skeletogenic mesenchyme and the overlying epidermis, respectively, in the same manner as in sea urchins. Therefore, the distinct activation of vegfr and vegf may have occurred in two lineages, sea urchins and brittle stars.

Collaboration


Dive into the Eiichi Shoguchi's collaboration.

Top Co-Authors

Avatar

Nori Satoh

Okinawa Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kanako Hisata

Okinawa Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Takeshi Kawashima

Okinawa Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Manabu Fujie

Okinawa Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ryo Koyanagi

Okinawa Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Noriyuki Satoh

Okinawa Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Takeshi Takeuchi

Okinawa Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Makiko Tanaka

Okinawa Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge