Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryo Koyanagi is active.

Publication


Featured researches published by Ryo Koyanagi.


Nature | 2011

Using the Acropora digitifera genome to understand coral responses to environmental change

Chuya Shinzato; Eiichi Shoguchi; Takeshi Kawashima; Mayuko Hamada; Kanako Hisata; Makiko Tanaka; Manabu Fujie; Mayuki Fujiwara; Ryo Koyanagi; Tetsuro Ikuta; Asao Fujiyama; David J. Miller; Nori Satoh

Despite the enormous ecological and economic importance of coral reefs, the keystone organisms in their establishment, the scleractinian corals, increasingly face a range of anthropogenic challenges including ocean acidification and seawater temperature rise. To understand better the molecular mechanisms underlying coral biology, here we decoded the approximately 420-megabase genome of Acropora digitifera using next-generation sequencing technology. This genome contains approximately 23,700 gene models. Molecular phylogenetics indicate that the coral and the sea anemone Nematostella vectensis diverged approximately 500 million years ago, considerably earlier than the time over which modern corals are represented in the fossil record (∼240 million years ago). Despite the long evolutionary history of the endosymbiosis, no evidence was found for horizontal transfer of genes from symbiont to host. However, unlike several other corals, Acropora seems to lack an enzyme essential for cysteine biosynthesis, implying dependency of this coral on its symbionts for this amino acid. Corals inhabit environments where they are frequently exposed to high levels of solar radiation, and analysis of the Acropora genome data indicates that the coral host can independently carry out de novo synthesis of mycosporine-like amino acids, which are potent ultraviolet-protective compounds. In addition, the coral innate immunity repertoire is notably more complex than that of the sea anemone, indicating that some of these genes may have roles in symbiosis or coloniality. A number of genes with putative roles in calcification were identified, and several of these are restricted to corals. The coral genome provides a platform for understanding the molecular basis of symbiosis and responses to environmental changes.


DNA Research | 2012

Draft Genome of the Pearl Oyster Pinctada fucata: A Platform for Understanding Bivalve Biology

Takeshi Takeuchi; Takeshi Kawashima; Ryo Koyanagi; Fuki Gyoja; Makiko Tanaka; Tetsuro Ikuta; Eiichi Shoguchi; Mayuki Fujiwara; Chuya Shinzato; Kanako Hisata; Manabu Fujie; Takeshi Usami; Kiyohito Nagai; Kaoru Maeyama; Kikuhiko Okamoto; Hideo Aoki; Takashi Ishikawa; Tetsuji Masaoka; Atushi Fujiwara; Kazuyoshi Endo; Hirotoshi Endo; Hiromichi Nagasawa; Shigeharu Kinoshita; Shuichi Asakawa; Shugo Watabe; Nori Satoh

The study of the pearl oyster Pinctada fucata is key to increasing our understanding of the molecular mechanisms involved in pearl biosynthesis and biology of bivalve molluscs. We sequenced ∼1150-Mb genome at ∼40-fold coverage using the Roche 454 GS-FLX and Illumina GAIIx sequencers. The sequences were assembled into contigs with N50 = 1.6 kb (total contig assembly reached to 1024 Mb) and scaffolds with N50 = 14.5 kb. The pearl oyster genome is AT-rich, with a GC content of 34%. DNA transposons, retrotransposons, and tandem repeat elements occupied 0.4, 1.5, and 7.9% of the genome, respectively (a total of 9.8%). Version 1.0 of the P. fucata draft genome contains 23 257 complete gene models, 70% of which are supported by the corresponding expressed sequence tags. The genes include those reported to have an association with bio-mineralization. Genes encoding transcription factors and signal transduction molecules are present in numbers comparable with genomes of other metazoans. Genome-wide molecular phylogeny suggests that the lophotrochozoan represents a distinct clade from ecdysozoans. Our draft genome of the pearl oyster thus provides a platform for the identification of selection markers and genes for calcification, knowledge of which will be important in the pearl industry.


Nature | 2015

Hemichordate genomes and deuterostome origins

Oleg Simakov; Takeshi Kawashima; Ferdinand Marlétaz; Jerry Jenkins; Ryo Koyanagi; Therese Mitros; Kanako Hisata; Jessen Bredeson; Eiichi Shoguchi; Fuki Gyoja; Jia-Xing Yue; Yi-Chih Chen; Robert M. Freeman; Akane Sasaki; Tomoe Hikosaka-Katayama; Atsuko Sato; Manabu Fujie; Kenneth W. Baughman; Judith Levine; Paul Gonzalez; Christopher B. Cameron; Jens H. Fritzenwanker; Ariel M. Pani; Hiroki Goto; Miyuki Kanda; Nana Arakaki; Shinichi Yamasaki; Jiaxin Qu; Andrew Cree; Yan Ding

Acorn worms, also known as enteropneust (literally, ‘gut-breathing’) hemichordates, are marine invertebrates that share features with echinoderms and chordates. Together, these three phyla comprise the deuterostomes. Here we report the draft genome sequences of two acorn worms, Saccoglossus kowalevskii and Ptychodera flava. By comparing them with diverse bilaterian genomes, we identify shared traits that were probably inherited from the last common deuterostome ancestor, and then explore evolutionary trajectories leading from this ancestor to hemichordates, echinoderms and chordates. The hemichordate genomes exhibit extensive conserved synteny with amphioxus and other bilaterians, and deeply conserved non-coding sequences that are candidates for conserved gene-regulatory elements. Notably, hemichordates possess a deuterostome-specific genomic cluster of four ordered transcription factor genes, the expression of which is associated with the development of pharyngeal ‘gill’ slits, the foremost morphological innovation of early deuterostomes, and is probably central to their filter-feeding lifestyle. Comparative analysis reveals numerous deuterostome-specific gene novelties, including genes found in deuterostomes and marine microbes, but not other animals. The putative functions of these genes can be linked to physiological, metabolic and developmental specializations of the filter-feeding ancestor.


Nature Communications | 2015

The Lingula genome provides insights into brachiopod evolution and the origin of phosphate biomineralization.

Yi-Jyun Luo; Takeshi Takeuchi; Ryo Koyanagi; Lixy Yamada; Miyuki Kanda; Mariia Khalturina; Manabu Fujie; Shinichi Yamasaki; Kazuyoshi Endo; Noriyuki Satoh

The evolutionary origins of lingulid brachiopods and their calcium phosphate shells have been obscure. Here we decode the 425-Mb genome of Lingula anatina to gain insights into brachiopod evolution. Comprehensive phylogenomic analyses place Lingula close to molluscs, but distant from annelids. The Lingula gene number has increased to ∼34,000 by extensive expansion of gene families. Although Lingula and vertebrates have superficially similar hard tissue components, our genomic, transcriptomic and proteomic analyses show that Lingula lacks genes involved in bone formation, indicating an independent origin of their phosphate biominerals. Several genes involved in Lingula shell formation are shared by molluscs. However, Lingula has independently undergone domain combinations to produce shell matrix collagens with EGF domains and carries lineage-specific shell matrix proteins. Gene family expansion, domain shuffling and co-option of genes appear to be the genomic background of Lingulas unique biomineralization. This Lingula genome provides resources for further studies of lophotrochozoan evolution.


Journal of Neuroscience Research | 2006

Altered gene activity correlated with long-term memory formation of conditioned taste aversion in Lymnaea

Sachiyo Azami; Akiko Wagatsuma; Hisayo Sadamoto; Dai Hatakeyama; Takeshi Usami; Manabu Fujie; Ryo Koyanagi; Kaoru Azumi; Yutaka Fujito; Ken Lukowiak; Etsuro Ito

The pond snail Lymnaea stagnalis is capable of learning conditioned taste aversion (CTA) and then consolidating that learning into long‐term memory (LTM) that persists for at least 1 month. LTM requires de novo protein synthesis and altered gene activity. Changes in gene activity in Lymnaea that are correlated with, much less causative, memory formation have not yet been identified. As a first step toward rectifying this situation, we constructed a cDNA microarray with mRNAs extracted from the central nervous system (CNS) of Lymnaea. We then, using this microarray assay, identified genes whose activity either increased or decreased following CTA memory consolidation. We also identified genes whose expression levels were altered after inhibition of the cyclic AMP response element‐binding protein (CREB) that is hypothesized to be a key transcription factor for CTA memory. We found that the molluscan insulin‐related peptide II (MIP II) was up‐regulated during CTA‐LTM, whereas the gene encoding pedal peptide preprohormone (Pep) was down‐regulated by CREB2 RNA interference. We next examined mRNAs of MIP II and Pep using real‐time RT‐PCR with SYBR Green. The MIP II mRNA level in the CNS of snails exhibiting “good” memory for CTA was confirmed to be significantly higher than that from the CNS of snails exhibiting “poor” memory. In contrast, there was no significant difference in expression levels of the Pep mRNA between “good” and “poor” performers. These data suggest that in Lymnaea MIP II may play a role in the consolidation process that forms LTM following CTA training.


Nature Communications | 2014

Comparative genome sequencing reveals genomic signature of extreme desiccation tolerance in the anhydrobiotic midge

Oleg Gusev; Yoshitaka Suetsugu; Richard Cornette; Takeshi Kawashima; Maria D. Logacheva; Alexey S. Kondrashov; Aleksey A. Penin; Rie Hatanaka; Shingo Kikuta; Sachiko Shimura; Hiroyuki Kanamori; Yuichi Katayose; Takashi Matsumoto; Elena I. Shagimardanova; Dmitry G. Alexeev; Vadim M. Govorun; Jennifer H. Wisecaver; Alexander S. Mikheyev; Ryo Koyanagi; Manabu Fujie; Tomoaki Nishiyama; Shuji Shigenobu; Tomoko F. Shibata; Veronika Golygina; Mitsuyasu Hasebe; Takashi Okuda; Nori Satoh; Takahiro Kikawada

Anhydrobiosis represents an extreme example of tolerance adaptation to water loss, where an organism can survive in an ametabolic state until water returns. Here we report the first comparative analysis examining the genomic background of extreme desiccation tolerance, which is exclusively found in larvae of the only anhydrobiotic insect, Polypedilum vanderplanki. We compare the genomes of P. vanderplanki and a congeneric desiccation-sensitive midge P. nubifer. We determine that the genome of the anhydrobiotic species specifically contains clusters of multi-copy genes with products that act as molecular shields. In addition, the genome possesses several groups of genes with high similarity to known protective proteins. However, these genes are located in distinct paralogous clusters in the genome apart from the classical orthologues of the corresponding genes shared by both chironomids and other insects. The transcripts of these clustered paralogues contribute to a large majority of the mRNA pool in the desiccating larvae and most likely define successful anhydrobiosis. Comparison of expression patterns of orthologues between two chironomid species provides evidence for the existence of desiccation-specific gene expression systems in P. vanderplanki.


Genome Biology and Evolution | 2014

Massive Gene Transfer and Extensive RNA Editing of a Symbiotic Dinoflagellate Plastid Genome

Sutada Mungpakdee; Chuya Shinzato; Takeshi Takeuchi; Takeshi Kawashima; Ryo Koyanagi; Kanako Hisata; Makiko Tanaka; Hiroki Goto; Manabu Fujie; Senjie Lin; Nori Satoh; Eiichi Shoguchi

Genome sequencing of Symbiodinium minutum revealed that 95 of 109 plastid-associated genes have been transferred to the nuclear genome and subsequently expanded by gene duplication. Only 14 genes remain in plastids and occur as DNA minicircles. Each minicircle (1.8–3.3 kb) contains one gene and a conserved noncoding region containing putative promoters and RNA-binding sites. Nine types of RNA editing, including a novel G/U type, were discovered in minicircle transcripts but not in genes transferred to the nucleus. In contrast to DNA editing sites in dinoflagellate mitochondria, which tend to be highly conserved across all taxa, editing sites employed in DNA minicircles are highly variable from species to species. Editing is crucial for core photosystem protein function. It restores evolutionarily conserved amino acids and increases peptidyl hydropathy. It also increases protein plasticity necessary to initiate photosystem complex assembly.


Zoological Science | 1999

Switching from asexual to sexual reproduction in the planarian Dugesia ryukyuensis: Bioassay system and basic description of sexualizing process

Kazuya Kobayashi; Ryo Koyanagi; Midori Matsumoto; Jocelyn Padilla Cabrera; Motonori Hoshi

Abstract An assay system has been established for the sexual induction in the OH strain, an exclusively fissiparous (asexual) strain, of Dugesia ryukyuensis by feeding them with sexually matured worms of Bdellocephala brunnea, an exclusively oviparous (sexual) species. In this assay system, asexual worms gradually differentiated sexual organs, namely the ovary, testis, genital pore and yolk gland in this order, and eventually mated and laid cocoons filled with fertilized eggs. Although the OH strain worms were believed not to have any sexual organs, a pair of undeveloped ovaries with a few oogonia were detected by an intensive histological search. Along with the progression of sexualization, five distinct stages were histologically recognized: In the first stage, the ovaries became larger enough to be externally apparent; oocytes appeared first at stage 2; the primordial testes emerged at stage 3; a genital pore opened, yolk gland primordia developed and spermatocytes appeared at stage 4; and finally at stage 5 matured spermatozoa and yolk glands were formed. Worms in stages 1 and 2 but not in later stages returned asexual if feeding on B. brunnea was interrupted. Furthermore, when the worms at stage 3 onwards were cut posterior to the ovaries, all the tail regenerants developed eventually into fully sexualized worms. Taking these results in account, we have concluded that the process of sexualization has a point-of-no-return between stages 2 and 3. It is likely also that the testes, even the primordia, play an important role in the maintenance and development of sexuality.


Zoological Letters | 2016

Bivalve-specific gene expansion in the pearl oyster genome: implications of adaptation to a sessile lifestyle

Takeshi Takeuchi; Ryo Koyanagi; Fuki Gyoja; Miyuki Kanda; Kanako Hisata; Manabu Fujie; Hiroki Goto; Shinichi Yamasaki; Kiyohito Nagai; Yoshiaki Morino; Hiroshi Miyamoto; Kazuyoshi Endo; Hirotoshi Endo; Hiromichi Nagasawa; Shigeharu Kinoshita; Shuichi Asakawa; Shugo Watabe; Noriyuki Satoh; Takeshi Kawashima

IntroductionBivalve molluscs have flourished in marine environments, and many species constitute important aquatic resources. Recently, whole genome sequences from two bivalves, the pearl oyster, Pinctada fucata, and the Pacific oyster, Crassostrea gigas, have been decoded, making it possible to compare genomic sequences among molluscs, and to explore general and lineage-specific genetic features and trends in bivalves. In order to improve the quality of sequence data for these purposes, we have updated the entire P. fucata genome assembly.ResultsWe present a new genome assembly of the pearl oyster, Pinctada fucata (version 2.0). To update the assembly, we conducted additional sequencing, obtaining accumulated sequence data amounting to 193× the P. fucata genome. Sequence redundancy in contigs that was caused by heterozygosity was removed in silico, which significantly improved subsequent scaffolding. Gene model version 2.0 was generated with the aid of manual gene annotations supplied by the P. fucata research community. Comparison of mollusc and other bilaterian genomes shows that gene arrangements of Hox, ParaHox, and Wnt clusters in the P. fucata genome are similar to those of other molluscs. Like the Pacific oyster, P. fucata possesses many genes involved in environmental responses and in immune defense. Phylogenetic analyses of heat shock protein70 and C1q domain-containing protein families indicate that extensive expansion of genes occurred independently in each lineage. Several gene duplication events prior to the split between the pearl oyster and the Pacific oyster are also evident. In addition, a number of tandem duplications of genes that encode shell matrix proteins are also well characterized in the P. fucata genome.ConclusionsBoth the Pinctada and Crassostrea lineages have expanded specific gene families in a lineage-specific manner. Frequent duplication of genes responsible for shell formation in the P. fucata genome explains the diversity of mollusc shell structures. These duplications reveal dynamic genome evolution to forge the complex physiology that enables bivalves to employ a sessile lifestyle in the intertidal zone.


BMC Evolutionary Biology | 2013

Identification of an intact ParaHox cluster with temporal colinearity but altered spatial colinearity in the hemichordate Ptychodera flava

Tetsuro Ikuta; Yi-Chih Chen; Rossella Annunziata; Hsiu-Chi Ting; Che-Huang Tung; Ryo Koyanagi; Kunifumi Tagawa; Tom Humphreys; Asao Fujiyama; Hidetoshi Saiga; Nori Satoh; Jr-Kai Yu; Maria Ina Arnone; Yi-Hsien Su

BackgroundParaHox and Hox genes are thought to have evolved from a common ancestral ProtoHox cluster or from tandem duplication prior to the divergence of cnidarians and bilaterians. Similar to Hox clusters, chordate ParaHox genes including Gsx, Xlox, and Cdx, are clustered and their expression exhibits temporal and spatial colinearity. In non-chordate animals, however, studies on the genomic organization of ParaHox genes are limited to only a few animal taxa. Hemichordates, such as the Enteropneust acorn worms, have been used to gain insights into the origins of chordate characters. In this study, we investigated the genomic organization and expression of ParaHox genes in the indirect developing hemichordate acorn worm Ptychodera flava.ResultsWe found that P. flava contains an intact ParaHox cluster with a similar arrangement to that of chordates. The temporal expression order of the P. flava ParaHox genes is the same as that of the chordate ParaHox genes. During embryogenesis, the spatial expression pattern of PfCdx in the posterior endoderm represents a conserved feature similar to the expression of its orthologs in other animals. On the other hand, PfXlox and PfGsx show a novel expression pattern in the blastopore. Nevertheless, during metamorphosis, PfXlox and PfCdx are expressed in the endoderm in a spatially staggered pattern similar to the situation in chordates.ConclusionsOur study shows that P. flava ParaHox genes, despite forming an intact cluster, exhibit temporal colinearity but lose spatial colinearity during embryogenesis. During metamorphosis, partial spatial colinearity is retained in the transforming larva. These results strongly suggest that intact ParaHox gene clustering was retained in the deuterostome ancestor and is correlated with temporal colinearity.

Collaboration


Dive into the Ryo Koyanagi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kanako Hisata

Okinawa Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takeshi Kawashima

Okinawa Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Takeshi Takeuchi

Okinawa Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Eiichi Shoguchi

Okinawa Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Noriyuki Satoh

Okinawa Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge