Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kanako Hisata is active.

Publication


Featured researches published by Kanako Hisata.


Nature | 2011

Using the Acropora digitifera genome to understand coral responses to environmental change

Chuya Shinzato; Eiichi Shoguchi; Takeshi Kawashima; Mayuko Hamada; Kanako Hisata; Makiko Tanaka; Manabu Fujie; Mayuki Fujiwara; Ryo Koyanagi; Tetsuro Ikuta; Asao Fujiyama; David J. Miller; Nori Satoh

Despite the enormous ecological and economic importance of coral reefs, the keystone organisms in their establishment, the scleractinian corals, increasingly face a range of anthropogenic challenges including ocean acidification and seawater temperature rise. To understand better the molecular mechanisms underlying coral biology, here we decoded the approximately 420-megabase genome of Acropora digitifera using next-generation sequencing technology. This genome contains approximately 23,700 gene models. Molecular phylogenetics indicate that the coral and the sea anemone Nematostella vectensis diverged approximately 500 million years ago, considerably earlier than the time over which modern corals are represented in the fossil record (∼240 million years ago). Despite the long evolutionary history of the endosymbiosis, no evidence was found for horizontal transfer of genes from symbiont to host. However, unlike several other corals, Acropora seems to lack an enzyme essential for cysteine biosynthesis, implying dependency of this coral on its symbionts for this amino acid. Corals inhabit environments where they are frequently exposed to high levels of solar radiation, and analysis of the Acropora genome data indicates that the coral host can independently carry out de novo synthesis of mycosporine-like amino acids, which are potent ultraviolet-protective compounds. In addition, the coral innate immunity repertoire is notably more complex than that of the sea anemone, indicating that some of these genes may have roles in symbiosis or coloniality. A number of genes with putative roles in calcification were identified, and several of these are restricted to corals. The coral genome provides a platform for understanding the molecular basis of symbiosis and responses to environmental changes.


Nature Cell Biology | 2006

Drosophila Pins-binding protein Mud regulates spindle-polarity coupling and centrosome organization.

Yasushi Izumi; Nao Ohta; Kanako Hisata; Thomas Raabe; Fumio Matsuzaki

The orientation of the mitotic spindle relative to the cell axis determines whether polarized cells undergo symmetric or asymmetric divisions. Drosophila epithelial cells and neuroblasts provide an ideal pair of cells to study the regulatory mechanisms involved. Epithelial cells divide symmetrically, perpendicular to the apical–basal axis. In the asymmetric divisions of neuroblasts, by contrast, the spindle reorients parallel to that axis, leading to the unequal distribution of cell-fate determinants to one daughter cell. Receptor-independent G-protein signalling involving the GoLoco protein Pins is essential for spindle orientation in both cell types. Here, we identify Mushroom body defect (Mud) as a downstream effector in this pathway. Mud directly associates and colocalizes with Pins at the cell cortex overlying the spindle pole(s) in both neuroblasts and epithelial cells. The cortical Mud protein is essential for proper spindle orientation in the two different division modes. Moreover, Mud localizes to centrosomes during mitosis independently of Pins to regulate centrosomal organization. We propose that Drosophila Mud, vertebrate NuMA and Caenorhabditis elegans Lin-5 (refs 5, 6) have conserved roles in the mechanism by which G-proteins regulate the mitotic spindle.


DNA Research | 2012

Draft Genome of the Pearl Oyster Pinctada fucata: A Platform for Understanding Bivalve Biology

Takeshi Takeuchi; Takeshi Kawashima; Ryo Koyanagi; Fuki Gyoja; Makiko Tanaka; Tetsuro Ikuta; Eiichi Shoguchi; Mayuki Fujiwara; Chuya Shinzato; Kanako Hisata; Manabu Fujie; Takeshi Usami; Kiyohito Nagai; Kaoru Maeyama; Kikuhiko Okamoto; Hideo Aoki; Takashi Ishikawa; Tetsuji Masaoka; Atushi Fujiwara; Kazuyoshi Endo; Hirotoshi Endo; Hiromichi Nagasawa; Shigeharu Kinoshita; Shuichi Asakawa; Shugo Watabe; Nori Satoh

The study of the pearl oyster Pinctada fucata is key to increasing our understanding of the molecular mechanisms involved in pearl biosynthesis and biology of bivalve molluscs. We sequenced ∼1150-Mb genome at ∼40-fold coverage using the Roche 454 GS-FLX and Illumina GAIIx sequencers. The sequences were assembled into contigs with N50 = 1.6 kb (total contig assembly reached to 1024 Mb) and scaffolds with N50 = 14.5 kb. The pearl oyster genome is AT-rich, with a GC content of 34%. DNA transposons, retrotransposons, and tandem repeat elements occupied 0.4, 1.5, and 7.9% of the genome, respectively (a total of 9.8%). Version 1.0 of the P. fucata draft genome contains 23 257 complete gene models, 70% of which are supported by the corresponding expressed sequence tags. The genes include those reported to have an association with bio-mineralization. Genes encoding transcription factors and signal transduction molecules are present in numbers comparable with genomes of other metazoans. Genome-wide molecular phylogeny suggests that the lophotrochozoan represents a distinct clade from ecdysozoans. Our draft genome of the pearl oyster thus provides a platform for the identification of selection markers and genes for calcification, knowledge of which will be important in the pearl industry.


Current Biology | 2003

Heterotrimeric G Proteins Regulate Daughter Cell Size Asymmetry in Drosophila Neuroblast Divisions

Naoyuki Fuse; Kanako Hisata; Alisa L. Katzen; Fumio Matsuzaki

Cell division often generates unequally sized daughter cells by off-center cleavages, which are due to either displacement of mitotic spindles or their asymmetry. Drosophila neuroblasts predominantly use the latter mechanism to divide into a large apical neuroblast and a small basal ganglion mother cell (GMC), where the neural fate determinants segregate. Apically localized components regulate both the spindle asymmetry and the localization of the determinants. Here, we show that asymmetric spindle formation depends on signaling mediated by the G beta subunit of heterotrimeric G proteins. G beta 13F distributes throughout the neuroblast cortex. Its lack induces a large symmetric spindle and causes division into nearly equal-sized cells with normal segregation of the determinants. In contrast, elevated G beta 13F activity generates a small spindle, suggesting that this factor suppresses spindle development. Depletion of the apical components also results in the formation of a small symmetric spindle at metaphase. Therefore, the apical components and G beta 13F affect the mitotic spindle shape oppositely. We propose that differential activation of G beta signaling biases spindle development within neuroblasts and thereby causes asymmetric spindles. Furthermore, the multiple equal cleavages of G beta mutant neuroblasts accompany neural defects; this finding suggests indispensable roles of eccentric division in assuring the stem cell properties of neuroblasts.


Nature | 2015

Hemichordate genomes and deuterostome origins

Oleg Simakov; Takeshi Kawashima; Ferdinand Marlétaz; Jerry Jenkins; Ryo Koyanagi; Therese Mitros; Kanako Hisata; Jessen Bredeson; Eiichi Shoguchi; Fuki Gyoja; Jia-Xing Yue; Yi-Chih Chen; Robert M. Freeman; Akane Sasaki; Tomoe Hikosaka-Katayama; Atsuko Sato; Manabu Fujie; Kenneth W. Baughman; Judith Levine; Paul Gonzalez; Christopher B. Cameron; Jens H. Fritzenwanker; Ariel M. Pani; Hiroki Goto; Miyuki Kanda; Nana Arakaki; Shinichi Yamasaki; Jiaxin Qu; Andrew Cree; Yan Ding

Acorn worms, also known as enteropneust (literally, ‘gut-breathing’) hemichordates, are marine invertebrates that share features with echinoderms and chordates. Together, these three phyla comprise the deuterostomes. Here we report the draft genome sequences of two acorn worms, Saccoglossus kowalevskii and Ptychodera flava. By comparing them with diverse bilaterian genomes, we identify shared traits that were probably inherited from the last common deuterostome ancestor, and then explore evolutionary trajectories leading from this ancestor to hemichordates, echinoderms and chordates. The hemichordate genomes exhibit extensive conserved synteny with amphioxus and other bilaterians, and deeply conserved non-coding sequences that are candidates for conserved gene-regulatory elements. Notably, hemichordates possess a deuterostome-specific genomic cluster of four ordered transcription factor genes, the expression of which is associated with the development of pharyngeal ‘gill’ slits, the foremost morphological innovation of early deuterostomes, and is probably central to their filter-feeding lifestyle. Comparative analysis reveals numerous deuterostome-specific gene novelties, including genes found in deuterostomes and marine microbes, but not other animals. The putative functions of these genes can be linked to physiological, metabolic and developmental specializations of the filter-feeding ancestor.


Genome Biology and Evolution | 2014

Massive Gene Transfer and Extensive RNA Editing of a Symbiotic Dinoflagellate Plastid Genome

Sutada Mungpakdee; Chuya Shinzato; Takeshi Takeuchi; Takeshi Kawashima; Ryo Koyanagi; Kanako Hisata; Makiko Tanaka; Hiroki Goto; Manabu Fujie; Senjie Lin; Nori Satoh; Eiichi Shoguchi

Genome sequencing of Symbiodinium minutum revealed that 95 of 109 plastid-associated genes have been transferred to the nuclear genome and subsequently expanded by gene duplication. Only 14 genes remain in plastids and occur as DNA minicircles. Each minicircle (1.8–3.3 kb) contains one gene and a conserved noncoding region containing putative promoters and RNA-binding sites. Nine types of RNA editing, including a novel G/U type, were discovered in minicircle transcripts but not in genes transferred to the nucleus. In contrast to DNA editing sites in dinoflagellate mitochondria, which tend to be highly conserved across all taxa, editing sites employed in DNA minicircles are highly variable from species to species. Editing is crucial for core photosystem protein function. It restores evolutionarily conserved amino acids and increases peptidyl hydropathy. It also increases protein plasticity necessary to initiate photosystem complex assembly.


Zoological Letters | 2016

Bivalve-specific gene expansion in the pearl oyster genome: implications of adaptation to a sessile lifestyle

Takeshi Takeuchi; Ryo Koyanagi; Fuki Gyoja; Miyuki Kanda; Kanako Hisata; Manabu Fujie; Hiroki Goto; Shinichi Yamasaki; Kiyohito Nagai; Yoshiaki Morino; Hiroshi Miyamoto; Kazuyoshi Endo; Hirotoshi Endo; Hiromichi Nagasawa; Shigeharu Kinoshita; Shuichi Asakawa; Shugo Watabe; Noriyuki Satoh; Takeshi Kawashima

IntroductionBivalve molluscs have flourished in marine environments, and many species constitute important aquatic resources. Recently, whole genome sequences from two bivalves, the pearl oyster, Pinctada fucata, and the Pacific oyster, Crassostrea gigas, have been decoded, making it possible to compare genomic sequences among molluscs, and to explore general and lineage-specific genetic features and trends in bivalves. In order to improve the quality of sequence data for these purposes, we have updated the entire P. fucata genome assembly.ResultsWe present a new genome assembly of the pearl oyster, Pinctada fucata (version 2.0). To update the assembly, we conducted additional sequencing, obtaining accumulated sequence data amounting to 193× the P. fucata genome. Sequence redundancy in contigs that was caused by heterozygosity was removed in silico, which significantly improved subsequent scaffolding. Gene model version 2.0 was generated with the aid of manual gene annotations supplied by the P. fucata research community. Comparison of mollusc and other bilaterian genomes shows that gene arrangements of Hox, ParaHox, and Wnt clusters in the P. fucata genome are similar to those of other molluscs. Like the Pacific oyster, P. fucata possesses many genes involved in environmental responses and in immune defense. Phylogenetic analyses of heat shock protein70 and C1q domain-containing protein families indicate that extensive expansion of genes occurred independently in each lineage. Several gene duplication events prior to the split between the pearl oyster and the Pacific oyster are also evident. In addition, a number of tandem duplications of genes that encode shell matrix proteins are also well characterized in the P. fucata genome.ConclusionsBoth the Pinctada and Crassostrea lineages have expanded specific gene families in a lineage-specific manner. Frequent duplication of genes responsible for shell formation in the P. fucata genome explains the diversity of mollusc shell structures. These duplications reveal dynamic genome evolution to forge the complex physiology that enables bivalves to employ a sessile lifestyle in the intertidal zone.


Nature | 2017

The crown-of-thorns starfish genome as a guide for biocontrol of this coral reef pest

Michael R. Hall; Kevin M. Kocot; Kenneth W. Baughman; Selene L. Fernandez-Valverde; Marie Gauthier; William L. Hatleberg; Arunkumar Krishnan; Carmel McDougall; Cherie A. Motti; Eiichi Shoguchi; Tianfang Wang; Xueyan Xiang; Min Zhao; Utpal Bose; Chuya Shinzato; Kanako Hisata; Manabu Fujie; Miyuki Kanda; Scott F. Cummins; Noriyuki Satoh; Sandie M. Degnan; Bernard M. Degnan

The crown-of-thorns starfish (COTS, the Acanthaster planci species group) is a highly fecund predator of reef-building corals throughout the Indo-Pacific region. COTS population outbreaks cause substantial loss of coral cover, diminishing the integrity and resilience of reef ecosystems. Here we sequenced genomes of COTS from the Great Barrier Reef, Australia and Okinawa, Japan to identify gene products that underlie species-specific communication and could potentially be used in biocontrol strategies. We focused on water-borne chemical plumes released from aggregating COTS, which make the normally sedentary starfish become highly active. Peptide sequences detected in these plumes by mass spectrometry are encoded in the COTS genome and expressed in external tissues. The exoproteome released by aggregating COTS consists largely of signalling factors and hydrolytic enzymes, and includes an expanded and rapidly evolving set of starfish-specific ependymin-related proteins. These secreted proteins may be detected by members of a large family of olfactory-receptor-like G-protein-coupled receptors that are expressed externally, sometimes in a sex-specific manner. This study provides insights into COTS-specific communication that may guide the generation of peptide mimetics for use on reefs with COTS outbreaks.


Genesis | 2014

On a possible evolutionary link of the stomochord of hemichordates to pharyngeal organs of chordates

Noriyuki Satoh; Kunifumi Tagawa; Christopher J. Lowe; Jr-Kai Yu; Takeshi Kawashima; Hiroki Takahashi; Michio Ogasawara; Marc W. Kirschner; Kanako Hisata; Yi-Hsien Su; John C. Gerhart

As a group closely related to chordates, hemichordate acorn worms are in a key phylogenic position for addressing hypotheses of chordate origins. The stomochord of acorn worms is an anterior outgrowth of the pharynx endoderm into the proboscis. In 1886 Bateson proposed homology of this organ to the chordate notochord, crowning this animal group “hemichordates.” Although this proposal has been debated for over a century, the question still remains unresolved. Here we review recent progress related to this question. First, the developmental mode of the stomochord completely differs from that of the notochord. Second, comparison of expression profiles of genes including Brachyury, a key regulator of notochord formation in chordates, does not support the stomochord/notochord homology. Third, FoxE that is expressed in the stomochord‐forming region in acorn worm juveniles is expressed in the club‐shaped gland and in the endostyle of amphioxus, in the endostyle of ascidians, and in the thyroid gland of vertebrates. Based on these findings, together with the anterior endodermal location of the stomochord, we propose that the stomochord has evolutionary relatedness to chordate organs deriving from the anterior pharynx rather than to the notochord. genesis 52:925–934, 2014.


Zoological Science | 2013

MarinegenomicsDB : An Integrated Genome Viewer for Community-Based Annotation of Genomes

Ryo Koyanagi; Takeshi Takeuchi; Kanako Hisata; Fuki Gyoja; Eiichi Shoguchi; Nori Satoh; Takeshi Kawashima

We constructed a web-based genome annotation platform, MarinegenomicsDB, to integrate genome data from various marine organisms including the pearl oyster Pinctada fucata and the coral Acropora digitifera. This newly developed viewer application provides open access to published data and a user-friendly environment for community-based manual gene annotation. Development on a flexible framework enables easy expansion of the website on demand. To date, more than 2000 genes have been annotated using this system. In the future, the website will be expanded to host a wider variety of data, more species, and different types of genome-wide analyses. The website is available at the following URL: http://marinegenomics.oist.jp.

Collaboration


Dive into the Kanako Hisata's collaboration.

Top Co-Authors

Avatar

Eiichi Shoguchi

Okinawa Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ryo Koyanagi

Okinawa Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Manabu Fujie

Okinawa Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Noriyuki Satoh

Okinawa Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takeshi Kawashima

Okinawa Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Takeshi Takeuchi

Okinawa Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nori Satoh

Okinawa Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Fuki Gyoja

Okinawa Institute of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge