Elena Bidnenko
Institut national de la recherche agronomique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elena Bidnenko.
Science | 2012
Pierre Nicolas; Ulrike Mäder; Etienne Dervyn; Tatiana Rochat; Aurélie Leduc; Nathalie Pigeonneau; Elena Bidnenko; Elodie Marchadier; Mark Hoebeke; Stéphane Aymerich; Dörte Becher; Paola Bisicchia; Eric Botella; Olivier Delumeau; Geoff Doherty; Emma L. Denham; Mark J. Fogg; Vincent Fromion; Anne Goelzer; Annette Hansen; Elisabeth Härtig; Colin R. Harwood; Georg Homuth; Hanne Østergaard Jarmer; Matthieu Jules; Edda Klipp; Ludovic Le Chat; François Lecointe; Peter J. Lewis; Wolfram Liebermeister
Outside In Acquisition and analysis of large data sets promises to move us toward a greater understanding of the mechanisms by which biological systems are dynamically regulated to respond to external cues. Now, two papers explore the responses of a bacterium to changing nutritional conditions (see the Perspective by Chalancon et al.). Nicolas et al. (p. 1103) measured transcriptional regulation for more than 100 different conditions. Greater amounts of antisense RNA were generated than expected and appeared to be produced by alternative RNA polymerase targeting subunits called sigma factors. One transition, from malate to glucose as the primary nutrient, was studied in more detail by Buescher et al. (p. 1099) who monitored RNA abundance, promoter activity in live cells, protein abundance, and absolute concentrations of intracellular and extracellular metabolites. In this case, the bacteria responded rapidly and largely without transcriptional changes to life on malate, but only slowly adapted to use glucose, a shift that required changes in nearly half the transcription network. These data offer an initial understanding of why certain regulatory strategies may be favored during evolution of dynamic control systems. A horizontal analysis reveals the breadth of genes turned on and off as nutrients change. Bacteria adapt to environmental stimuli by adjusting their transcriptomes in a complex manner, the full potential of which has yet to be established for any individual bacterial species. Here, we report the transcriptomes of Bacillus subtilis exposed to a wide range of environmental and nutritional conditions that the organism might encounter in nature. We comprehensively mapped transcription units (TUs) and grouped 2935 promoters into regulons controlled by various RNA polymerase sigma factors, accounting for ~66% of the observed variance in transcriptional activity. This global classification of promoters and detailed description of TUs revealed that a large proportion of the detected antisense RNAs arose from potentially spurious transcription initiation by alternative sigma factors and from imperfect control of transcription termination.
Science | 2012
Joerg Martin Buescher; Wolfram Liebermeister; Matthieu Jules; Markus Uhr; Jan Muntel; Eric Botella; Bernd Hessling; Roelco J. Kleijn; Ludovic Le Chat; François Lecointe; Ulrike Mäder; Pierre Nicolas; Sjouke Piersma; Frank Rügheimer; Dörte Becher; Philippe Bessières; Elena Bidnenko; Emma L. Denham; Etienne Dervyn; Kevin M. Devine; Geoff Doherty; Samuel Drulhe; Liza Felicori; Mark J. Fogg; Anne Goelzer; Annette Hansen; Colin R. Harwood; Michael Hecker; Sebastian Hübner; Claus Hultschig
Outside In Acquisition and analysis of large data sets promises to move us toward a greater understanding of the mechanisms by which biological systems are dynamically regulated to respond to external cues. Now, two papers explore the responses of a bacterium to changing nutritional conditions (see the Perspective by Chalancon et al.). Nicolas et al. (p. 1103) measured transcriptional regulation for more than 100 different conditions. Greater amounts of antisense RNA were generated than expected and appeared to be produced by alternative RNA polymerase targeting subunits called sigma factors. One transition, from malate to glucose as the primary nutrient, was studied in more detail by Buescher et al. (p. 1099) who monitored RNA abundance, promoter activity in live cells, protein abundance, and absolute concentrations of intracellular and extracellular metabolites. In this case, the bacteria responded rapidly and largely without transcriptional changes to life on malate, but only slowly adapted to use glucose, a shift that required changes in nearly half the transcription network. These data offer an initial understanding of why certain regulatory strategies may be favored during evolution of dynamic control systems. A vertical analysis reveals that a simple switch of one food for another evokes changes at many levels. Adaptation of cells to environmental changes requires dynamic interactions between metabolic and regulatory networks, but studies typically address only one or a few layers of regulation. For nutritional shifts between two preferred carbon sources of Bacillus subtilis, we combined statistical and model-based data analyses of dynamic transcript, protein, and metabolite abundances and promoter activities. Adaptation to malate was rapid and primarily controlled posttranscriptionally compared with the slow, mainly transcriptionally controlled adaptation to glucose that entailed nearly half of the known transcription regulation network. Interactions across multiple levels of regulation were involved in adaptive changes that could also be achieved by controlling single genes. Our analysis suggests that global trade-offs and evolutionary constraints provide incentives to favor complex control programs.
Applied and Environmental Microbiology | 2008
Sandrine Auger; Nathalie Galleron; Elena Bidnenko; S. Dusko Ehrlich; Alla Lapidus; Alexei Sorokin
ABSTRACT Bacteria of the Bacillus cereus group are known to cause food poisoning. A rare phylogenetically remote strain, NVH391-98, was recently characterized to encode a particularly efficient cytotoxin K presumably responsible for food poisoning. This pathogenic strain and its close relatives can be phenotypically distinguished from other strains of the B. cereus group by the inability to grow at temperatures below 17°C and by the ability to grow at temperatures from 48 to 53°C. A temperate phage, phBC391A2, residing in the genome of NVH391-98 allows us to distinguish the three known members of this thermophilic strain cluster.
Molecular Microbiology | 2002
Elena Bidnenko; S. Dusko Ehrlich; Marie-Christine Chopin
The function of the Lactococcus lactis bacteriophage bIL66 middle time‐expressed operon (M‐operon), involved in sensitivity to the abortive infection mechanism AbiD1, was examined. Expression of the M‐operon is detrimental to Escherichia coli cells, induces the SOS response and is lethal to recA and recBC E. coli mutants, which are both deficient in recombinational repair of chromosomal double‐stranded breaks (DSBs). The use of an inducible expression system allowed us to demonstrate that the M‐operon‐encoded proteins generate a limited number of randomly distributed chromosomal DSBs that are substrates for ExoV‐mediated DNA degradation. DSBs were also shown to occur upstream of the replication initiation point of unidirectionally theta‐replicating plasmids. The characteristics of the DSBs lead us to propose that the endonucleolytic activity of the M‐operon is not specific to DNA sequence, but rather to branched DNA structures. Genetic and physical analysis performed with different derivatives of the M‐operon indicated that two orfs (orf2 and orf3) are needed for nucleolytic activity. The orf3 product has amino acid homology with the E. coli RuvC Holliday junction resolvase. By site‐specific mutagenesis, we have shown that one of the amino acid residues constituting the active centre of RuvC enzyme (Glu‐66) and conserved in ORF3 (Glu‐67) is essential for the nucleolytic activity of the M‐operon gene product(s). We therefore propose that orf2 and orf3 of the M‐operon code for a structure‐specific endonuclease (M‐nuclease), which might be essential for phage multiplication.
BMC Molecular Biology | 2009
Elena Bidnenko; Alain Chopin; S. Dusko Ehrlich; Marie-Christine Chopin
BackgroundAbortive infection (Abi) mechanisms comprise numerous strategies developed by bacteria to avoid being killed by bacteriophage (phage). Escherichia coli Abis are considered as mediators of programmed cell death, which is induced by infecting phage. Abis were also proposed to be stress response elements, but no environmental activation signals have yet been identified. Abis are widespread in Lactococcus lactis, but regulation of their expression remains an open question. We previously showed that development of AbiD1 abortive infection against phage bIL66 depends on orf1, which is expressed in mid-infection. However, molecular basis for this activation remains unclear.ResultsIn non-infected AbiD1+ cells, specific abiD1 mRNA is unstable and present in low amounts. It does not increase during abortive infection of sensitive phage. Protein synthesis directed by the abiD1 translation initiation region is also inefficient. The presence of the phage orf1 gene, but not its mutant AbiD1R allele, strongly increases abiD1 translation efficiency. Interestingly, cell growth at low temperature also activates translation of abiD1 mRNA and consequently the AbiD1 phenotype, and occurs independently of phage infection. There is no synergism between the two abiD1 inducers. Purified Orf1 protein binds mRNAs containing a secondary structure motif, identified within the translation initiation regions of abiD1, the mid-infection phage bIL66 M-operon, and the L. lactis osmC gene.ConclusionExpression of the abiD1 gene and consequently AbiD1 phenotype is specifically translationally activated by the phage Orf1 protein. The loss of ability to activate translation of abiD1 mRNA determines the molecular basis for phage resistance to AbiD1. We show for the first time that temperature downshift also activates abortive infection by activation of abiD1 mRNA translation.
MicrobiologyOpen | 2015
Nicolas Mirouze; Elena Bidnenko; Philippe Noirot; Sandrine Auger
Under nitrogen limitation conditions, Bacillus subtilis induces a sophisticated network of adaptation responses. More precisely, the B. subtilis TnrA regulator represses or activates directly or indirectly the expression of a hundred genes in response to nitrogen availability. The global TnrA regulon have already been identified among which some directly TnrA‐regulated genes have been characterized. However, a genome‐wide mapping of in vivo TnrA‐binding sites was still needed to clearly define the set of genes directly regulated by TnrA. Using chromatin immunoprecipitation coupled with hybridization to DNA tiling arrays (ChIP‐on‐chip), we now provide in vivo evidence that TnrA reproducibly binds to 42 regions on the chromosome. Further analysis with real‐time in vivo transcriptional profiling, combined with results from previous reports, allowed us to define the TnrA primary regulon. We identified 35 promoter regions fulfilling three criteria necessary to be part of this primary regulon: (i) TnrA binding in ChIP‐on‐chip experiments and/or in previous in vitro studies; (ii) the presence of a TnrA box; (iii) TnrA‐dependent expression regulation. In addition, the TnrA primary regulon delimitation allowed us to improve the TnrA box consensus. Finally, our results reveal new interconnections between the nitrogen regulatory network and other cellular processes.
PLOS ONE | 2011
Agnieszka K. Szczepankowska; Eric Prestel; Mahendra Mariadassou; Jacek Bardowski; Elena Bidnenko
Background The single-stranded-nucleic acid binding (SSB) protein superfamily includes proteins encoded by different organisms from Bacteria and their phages to Eukaryotes. SSB proteins share common structural characteristics and have been suggested to descend from an ancestor polypeptide. However, as other proteins involved in DNA replication, bacterial SSB proteins are clearly different from those found in Archaea and Eukaryotes. It was proposed that the corresponding genes in the phage genomes were transferred from the bacterial hosts. Recently new SSB proteins encoded by the virulent lactococcal bacteriophages (Orf14bIL67-like proteins) have been identified and characterized structurally and biochemically. Methodology/Principal Findings This study focused on the determination of phylogenetic relationships between Orf14bIL67-like proteins and other SSBs. We have performed a large scale phylogenetic analysis and pairwise sequence comparisons of SSB proteins from different phyla. The results show that, in remarkable contrast to other phage SSBs, the Orf14bIL67–like proteins form a distinct, self-contained and well supported phylogenetic group connected to the archaeal SSBs. Functional studies demonstrated that, despite the structural and amino acid sequence differences from bacterial SSBs, Orf14bIL67 protein complements the conditional lethal ssb-1 mutation of Escherichia coli. Conclusions/Significance Here we identified for the first time a group of phages encoded SSBs which are clearly distinct from their bacterial counterparts. All methods supported the recognition of these phage proteins as a new family within the SSB superfamily. Our findings suggest that unlike other phages, the virulent lactococcal phages carry ssb genes that were not acquired from their hosts, but transferred from an archaeal genome. This represents a unique example of a horizontal gene transfer between Archaea and bacterial phages.
Current Opinion in Microbiology | 2005
Marie-Christine Chopin; Alain Chopin; Elena Bidnenko
Journal of Bacteriology | 1995
Jamila Anba; Elena Bidnenko; A Hillier; Dusko S. Ehrlich; Marie-Christine Chopin
Journal of Bacteriology | 1995
Elena Bidnenko; Dusko S. Ehrlich; Marie-Christine Chopin