Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eliana H. Akamine is active.

Publication


Featured researches published by Eliana H. Akamine.


Journal of Cardiovascular Pharmacology | 2002

Enhanced oxidative stress as a potential mechanism underlying the programming of hypertension in utero.

Maria do Carmo Pinho Franco; Ana Paula Dantas; Eliana H. Akamine; Elisa Mitiko Kawamoto; Zuleica B. Fortes; Cristoforo Scavone; Rita C. Tostes; Maria Helena C. Carvalho; Dorothy Nigro

Maternal undernutrition during critical periods of organ development is known to impair fetal growth and predispose to the development of adulthood diseases, such as hypertension, coronary heart disease and type II diabetes that are linked to low birth weight and are characterized by endothelial dysfunction. Increased oxidative stress, in rats submitted to intrauterine undernutrition, provides a potential explanation for the endothelial dysfunction development. The aim of this study was to determine the oxidative stress and its consequence on mesenteric arteriolar responses to vasoactive agents in offspring from diet-restricted dams. For this, female pregnant Wistar rats were fed either normal or 50% of normal intake diets, during the whole gestational period. In male offspring, arterial blood pressure was determined by the tail cuff method in anesthetized rats, mesenteric arteriolar reactivity and superoxide anion generation were studied using intravital microscopy and superoxide dismutase activity was determined in mesentery by spectrophotometric assay. Intrauterine undernutrition induced hypertension, decreased vasodilation to acetylcholine and bradykinin but did not alter the responses to sodium nitroprusside. Topical application of superoxide dismutase and superoxide dismutase mimetic manganese (III) tetrakis (1-methyl-4-pyridyl) porphyrin significantly improved the altered arteriolar responses to acetylcholine and bradykinin. A decreased superoxide dismutase activity and an increased superoxide anion concentration were observed in the offspring of diet-restricted dams. This study shows for the first time that intrauterine undernutrition enhances oxidative stress in vivo and relates this to the impaired endothelium-dependent vasodilation.


Clinical Science | 2012

Toll-like receptor 4 contributes to blood pressure regulation and vascular contraction in spontaneously hypertensive rats

Gisele Facholi Bomfim; Rosangela A. dos Santos; Maria Aparecida de Oliveira; Fernanda R.C. Giachini; Eliana H. Akamine; Rita C. Tostes; Zuleica B. Fortes; R. Clinton Webb; Maria Helena C. Carvalho

Activation of Toll-like receptors (TLR) induces gene expression of proteins involved in the immune system response. TLR4 has been implicated in the development and progression of cardiovascular diseases. Innate and adaptive immunity contribute to hypertension-associated end-organ damage, although the mechanism by which this occurs remains unclear. In the present study we hypothesize that inhibition of TLR4 decreases blood pressure and improves vascular contractility in resistance arteries from spontaneously hypertensive rats (SHR). TLR4 protein expression in mesenteric resistance arteries was higher in 15 weeks-old SHR than in same age Wistar controls or in 5 weeks-old SHR. In order to decrease activation of TLR4, 15 weeks-old SHR and Wistar rats were treated with anti-TLR4 antibody or non-specific IgG control antibody for 15 days (1µg per day, i.p.). Treatment with anti-TLR4 decreased mean arterial pressure as well as TLR4 protein expression in mesenteric resistance arteries and interleukin-6 (IL-6) serum levels from SHR when compared to SHR treated with IgG. No changes in these parameters were found in Wistar treated rats. Mesenteric resistance arteries from anti-TLR4-treated SHR exhibited decreased maximal contractile response to noradrenaline compared to IgG-treated-SHR. Inhibition of cyclooxygenase-1 (Cox) and Cox-2, enzymes related to inflammatory pathways, decreased noradrenaline responses only in mesenteric resistance arteries of SHR treated with IgG. Cox-2 expression and thromboxane A2 release were decreased in SHR treated with anti-TLR4 compared with IgG-treated-SHR. Our results suggest that TLR4 activation contributes to increased blood pressure, low grade inflammation and plays a role in the augmented vascular contractility displayed by SHR.


Journal of Hypertension | 2010

Oxidative stress and inflammatory mediators contribute to endothelial dysfunction in high-fat diet-induced obesity in mice

Renata Kobayasi; Eliana H. Akamine; Ana P. Davel; Maria Aparecida Marchesan Rodrigues; Carla Roberta de Oliveira Carvalho; Luciana V. Rossoni

Objective We investigated the effects of high-fat diet-induced obesity on vascular proinflammatory factors and oxidative stress on endothelium-dependent relaxation of the aorta. Methods Female Swiss mice were submitted to a high-fat diet for 16 weeks. At the end of the experimental period, we evaluated blood pressure, relaxation in response to acetylcholine in aortic rings in the absence and the presence of the superoxide anion scavenger, superoxide dismutase (SOD, 150 U/ml), and the nuclear factor (NF)-κB inhibitor, sodium salicylate (5 mmol/l). Aortic protein expression of endothelial nitric oxide synthase, Cu/Zn-SOD, NF-κB, IκB-α, and proinflammatory cytokines were also evaluated. Results Obese mice presented higher systolic and diastolic blood pressure than control mice (P < 0.05). The relaxation of aortas to acetylcholine, but not to sodium nitroprusside, was significantly decreased in obese mice and was corrected by both SOD and sodium salicylate (P < 0.05). The protein expression of endothelial nitric oxide synthase and Cu/Zn-SOD was significantly decreased in aorta from obese mice (P < 0.05). Total p65 NF-κB subunit protein expression was not affected by obesity, but the protein expression of NF-κB inhibitor IκB-α was lower in aorta from obese mice (P < 0.05). There were no significant differences in the interleukin (IL)-1β and IL-6 protein expression between groups. In contrast, the expression of TNF-α was significantly increased in aortas from obese mice. Conclusion Our results suggest that the reduced antioxidant defense and the local NF-κB pathway play an important role in the impairment of endothelium-dependent relaxation in aorta from obese mice.


Cardiovascular Research | 2003

NADPH oxidase and enhanced superoxide generation in intrauterine undernourished rats: involvement of the renin–angiotensin system

Maria do Carmo Pinho Franco; Eliana H. Akamine; Giovana Seno Di Marco; Dulce Elena Casarini; Zuleica B. Fortes; Rita C. Tostes; Maria Helena C. Carvalho; Dorothy Nigro

OBJECTIVE We previously reported that intrauterine undernutrition increased the oxidative stress by decreasing superoxide dismutase activity. In the present study, we tested whether NADPH oxidase, xanthine oxidase, cyclooxygenase or nitric oxide synthase are responsible for the increased O(2)(-) generation observed in rats submitted to intrauterine undernutrition. In addition, we investigated the effect of angiotensin II (ANG II) on O(2)(-) production via activation of NADPH oxidase. METHODS Female pregnant Wistar rats were fed either normal or 50% of the normal intake diets, during the whole gestational period. At 16 weeks of age, the rats were used for the study of intravital fluorescence microscopy; microvascular reactivity, local ANG II concentration and AT(1), p22(phox) and gp91(phox) gene expression. In this study only the male offspring was used. RESULTS Treatment of mesenteric arterioles with the xanthine oxidase inhibitor oxypurinol, the nitric oxide synthase inhibitor L-NAME or the cyclooxygenase inhibitor diclofenac did not significantly change superoxide production. Thus, these vascular sources of superoxide were not responsible for the increased superoxide concentration. In contrast, treatment with the NADPH oxidase inhibitor apocynin significantly decreased superoxide generation and improved vascular function. On the other hand, intrauterine undernutrition did not alter the gene expression for p22(phox) and gp91(phox). The fact that the local ANG II concentration was increased and the attenuation of oxidative stress by blocking AT(1) receptor with losartan, led us to suggest that ANG II induces O(2)(-) generation in intrauterine undernourished rats. CONCLUSION Our study shows that NADPH oxidase inhibition attenuated superoxide anion generation and ameliorated vascular function in rats submitted to intrauterine undernutrition. Although it is not clear which mechanisms are responsible for the increase in NADPH oxidase activity, a role for ANG II-mediated superoxide production via activation of NADPH oxidase is suggested.


Journal of Endocrinology | 2010

Obesity induced by high-fat diet promotes insulin resistance in the ovary.

Eliana H. Akamine; Anderson C. Marçal; Joao Paulo Camporez; Mara S. Hoshida; Luciana C. Caperuto; Estela Bevilacqua; Carla R.O. Carvalho

Besides the effects on peripheral energy homeostasis, insulin also has an important role in ovarian function. Obesity has a negative effect on fertility, and may play a role in the development of the polycystic ovary syndrome in susceptible women. Since insulin resistance in the ovary could contribute to the impairment of reproductive function in obese women, we evaluated insulin signaling in the ovary of high-fat diet-induced obese rats. Female Wistar rats were submitted to a high-fat diet for 120 or 180 days, and the insulin signaling pathway in the ovary was evaluated by immunoprecipitation and immunoblotting. At the end of the diet period, we observed insulin resistance, hyperinsulinemia, an increase in progesterone serum levels, an extended estrus cycle, and altered ovarian morphology in obese female rats. Moreover, in female obese rats treated for 120 days with the high-fat diet, the increase in progesterone levels occurred together with enhancement of LH levels. The ovary from high-fat-fed female rats showed a reduction in the insulin receptor substrate/phosphatidylinositol 3-kinase/AKT intracellular pathway, associated with an increase in FOXO3a, IL1B, and TNFalpha protein expression. These changes in the insulin signaling pathway may have a role in the infertile state associated with obesity.


The Journal of Physiology | 2011

Dehydroepiandrosterone protects against oxidative stress-induced endothelial dysfunction in ovariectomized rats

Joao Paulo Camporez; Eliana H. Akamine; Ana P. Davel; Celso Rodrigues Franci; Luciana V. Rossoni; Carla Roberta de Oliveira Carvalho

Non‐technical summary  It is well known that cardiovascular disease is more frequent in postmenopausal than in premenopausal women. Moreover, it has been shown that dehydroepiandrosterone (DHEA), a steroid hormone secreted by adrenal glands, reduces during ageing. Its reduced plasma level has been related to increased prevalence of obesity, insulin resistance and cardiovascular disease. We show that DHEA treatment in ovariectomized rats, an experimental model of menopause, reduces blood pressure and improves vascular function. Furthermore, DHEA reduced reactive oxygen species (ROS), correcting the reduced protein expression of Cu/Zn‐SOD, an antioxidant protein, and increased protein expression of NADPH oxidase, a pro‐oxidant protein. This work shows the potential effect of DHEA upon correction of endothelial dysfunction observed on oestrogen deprivation.


The Journal of Physiology | 2004

Tetrahydrobiopterin improves endothelial dysfunction and vascular oxidative stress in microvessels of intrauterine undernourished rats

Maria do Carmo Pinho Franco; Zuleica B. Fortes; Eliana H. Akamine; Elisa Mitiko Kawamoto; Cristoforo Scavone; Luiz R.G. Britto; Marcelo N. Muscará; Simone A. Teixeira; Rita C. Tostes; Maria Helena C. Carvalho; Dorothy Nigro

In the present study, we investigated the effects of the exogenous application of tetrahydrobiopterin on the endothelium‐dependent vasorelaxation and superoxide anion generation in the mesenteric microvessels of intrauterine undernourished rats. In addition, we investigated the presence of peroxynitrite in these rats by evaluation of nitrotyrosine‐containing proteins, a stable end‐product of peroxynitrite oxidation. For this, female pregnant Wistar rats were fed either normal or 50% of the normal intake diets during the whole gestational period. Male offspring (16 weeks of age) were studied to assess microvascular reactivity, superoxide production using a hydroethidine staining assay, nitric oxide synthase (NOS) activity and nitric oxide (NO) production. Western blot analysis was used to quantify nitrotyrosine‐containing proteins and relative multiplex RT‐PCR analysis for endothelial NOS (eNOS) mRNA expression. Superfusion with tetrahydrobiopterin significantly decreased superoxide generation and improved vascular function. Intrauterine malnutrition induced a decrement of NOS activity and NO production without affecting the gene expression of eNOS. However, incubation with tetrahydrobiopterin significantly improved NO production after stimulation with acetylcholine or bradykinin in intrauterine undernourished rats. The fact that the nitrotyrosine‐containing proteins were increased could, at first sight, suggest that the peroxynitrite is the mediator responsible for the excessive oxidation and depletion of tetrahydrobiopterin. Our study shows that exogenous application of tetrahydrobiopterin leads to a significant improvement of endothelium‐dependent vasodilatation, enhanced NO production and decreased superoxide generation in microvessels of intrauterine undernourished rats. Since we found a decrease in NOS activity without an alteration in the gene expression of eNOS, we suggest that impaired NOS‐dependent responses of mesenteric arterioles are related to the impairment of tetrahydrobiopterin pathways.


Journal of Cardiovascular Pharmacology | 2003

Vitamins C and E improve endothelial dysfunction in intrauterine-undernourished rats by decreasing vascular superoxide anion concentration.

Maria do Carmo Pinho Franco; Eliana H. Akamine; Maria Aparecida de Oliveira; Zuleica B. Fortes; Rita C. Tostes; Maria Helena C. Carvalho; Dorothy Nigro

Epidemiological studies suggest that intrauterine undernutrition plays an important role in the development of arterial hypertension in adulthood. Ascorbic acid (vitamin C) and &agr;–tocopherol (vitamin E) have antioxidant properties that could improve redox-sensitive vascular changes associated with hypertension. The authors determined whether vitamins C and E treatments ameliorate the hypertension and vascular function in male rats submitted to intrauterine undernutrition. Pregnant Wistar rats were fed either normal or 50% of the normal intake diets during the whole gestational period. At 14 weeks of age, male offspring of nutritionally restricted dams were divided into 3 subgroups: vehicle-treated (vehicle for 15 days, by gastric gavage, n = 9), vitamin C-treated (ascorbic acid, 150 mg/Kg/d for 15 days, by gastric gavage, n = 15) and vitamin E-treated (&agr;-tocopherol, 350 mg/kg per day for 15 days, by gastric gavage, n = 15). Systolic blood pressure was determined before and after antioxidant treatments by the tail-cuff method. At 16 weeks of age, the rats were used for the study of microvascular reactivity and intravital fluorescence microscopy. Intrauterine undernutrition induced hypertension, and vitamins C or E treatments reduced the blood pressure levels. The decreased acetylcholine and bradykinin-induced vasodilation was restored in the vitamin-treated rats. These effects were associated with decreased vascular superoxide anion concentration. The results show that vitamins C and E reduce oxidative stress and high blood pressure levels, and improve vascular function in intrauterine-undernourished rats.


Nutrition Metabolism and Cardiovascular Diseases | 2011

Obesity induced by neonatal treatment with monosodium glutamate impairs microvascular reactivity in adult rats: role of NO and prostanoids.

Nubia S. Lobato; Fernando P. Filgueira; Eliana H. Akamine; Ana P. Davel; Luciana V. Rossoni; R.C. Tostes; Maria Helena C. Carvalho; Zuleica B. Fortes

BACKGROUND AND AIM given that obesity is an independent risk factor for the development of cardiovascular diseases we decided to investigate the mechanisms involved in microvascular dysfunction using a monosodium glutamate (MSG)-induced model of obesity, which allows us to work on both normotensive and normoglycemic conditions. METHODS AND RESULTS Male offspring of Wistar rats received MSG from the second to the sixth day after birth. Sixteen-week-old MSG rats displayed higher Lee index, fat accumulation, dyslipidemia and insulin resistance, with no alteration in glycemia and blood pressure. The effect of norepinephrine (NE), which was increased in MSG rats, was potentiated by L-nitro arginine methyl ester (L-NAME) or tetraethylammonium (TEA) and was reversed by indomethacin and NS-398. Sensitivity to acetylcholine (ACh), which was reduced in MSG rats, was further impaired by L-NAME or TEA, and was corrected by indomethacin, NS-398 and tetrahydrobiopterin (BH4). MSG rats displayed increased endothelium-independent relaxation to sodium nitroprusside. A reduced prostacyclin/tromboxane ratio was found in the mesenteric beds of MSG rats. Mesenteric arterioles of MSG rats also displayed reduced nitric oxide (NO) production along with increased reactive oxygen species (ROS) generation; these were corrected by BH4 and either L-NAME or superoxide dismutase, respectively. The protein expression of eNOS and cyclooxygenase (COX)-2 was increased in mesenteric arterioles from MSG rats. CONCLUSION Obesity/insulin resistance has a detrimental impact on vascular function. Reduced NO bioavailability and increased ROS generation from uncoupled eNOS and imbalanced release of COX products from COX-2 play a critical role in the development of these vascular alterations.


Endocrinology | 2008

Modulation of Bone Morphogenetic Protein-9 Expression and Processing by Insulin, Glucose, and Glucocorticoids: Possible Candidate for Hepatic Insulin-Sensitizing Substance

Luciana C. Caperuto; Gabriel F. Anhê; Tavane David Cambiaghi; Eliana H. Akamine; Daniella do Carmo Buonfiglio; José Cipolla-Neto; Rui Curi; Silvana Bordin

Bone morphogenetic protein 9 (BMP-9), a member of the TGF-beta superfamily predominantly expressed in nonparenchymal liver cells, has been demonstrated to improve glucose homeostasis in diabetic mice. Along with this therapeutic effect, BMP-9 was proposed as a candidate for the hepatic insulin-sensitizing substance (HISS). Whether BMP-9 plays a physiological role in glucose homeostasis is still unknown. In the present study, we show that BMP-9 expression and processing is severely reduced in the liver of insulin-resistant rats. BMP-9 expression and processing was directly stimulated by in situ exposition of the liver to the combination of glucose and insulin and oral glucose in overnight fasted rats. Additionally, prolonged fasting (72 h) abrogated refeeding-induced BMP-9 expression and processing. Previous exposition to dexamethasone, a known inductor of insulin resistance, reduced BMP-9 processing stimulated by the combination of insulin and glucose. Finally, we show that neutralization of BMP-9 with an anti-BMP-9 antibody induces glucose intolerance and insulin resistance in 12-h fasted rats. Collectively, the present results demonstrate that BMP-9 plays an important role in the control of glucose homeostasis of the normal rat. Additionally, BMP-9 is expressed and processed in an HISS-like fashion, which is impaired in the presence of insulin resistance. BMP-9 regulation according to the feeding status and the presence of diabetogenic factors reinforces the hypothesis that BMP-9 might exert the role of HISS in glucose homeostasis physiology.

Collaboration


Dive into the Eliana H. Akamine's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rita C. Tostes

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Dorothy Nigro

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R.C. Tostes

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge