Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fernando P. Filgueira is active.

Publication


Featured researches published by Fernando P. Filgueira.


Nutrition Metabolism and Cardiovascular Diseases | 2011

Obesity induced by neonatal treatment with monosodium glutamate impairs microvascular reactivity in adult rats: role of NO and prostanoids.

Nubia S. Lobato; Fernando P. Filgueira; Eliana H. Akamine; Ana P. Davel; Luciana V. Rossoni; R.C. Tostes; Maria Helena C. Carvalho; Zuleica B. Fortes

BACKGROUND AND AIM given that obesity is an independent risk factor for the development of cardiovascular diseases we decided to investigate the mechanisms involved in microvascular dysfunction using a monosodium glutamate (MSG)-induced model of obesity, which allows us to work on both normotensive and normoglycemic conditions. METHODS AND RESULTS Male offspring of Wistar rats received MSG from the second to the sixth day after birth. Sixteen-week-old MSG rats displayed higher Lee index, fat accumulation, dyslipidemia and insulin resistance, with no alteration in glycemia and blood pressure. The effect of norepinephrine (NE), which was increased in MSG rats, was potentiated by L-nitro arginine methyl ester (L-NAME) or tetraethylammonium (TEA) and was reversed by indomethacin and NS-398. Sensitivity to acetylcholine (ACh), which was reduced in MSG rats, was further impaired by L-NAME or TEA, and was corrected by indomethacin, NS-398 and tetrahydrobiopterin (BH4). MSG rats displayed increased endothelium-independent relaxation to sodium nitroprusside. A reduced prostacyclin/tromboxane ratio was found in the mesenteric beds of MSG rats. Mesenteric arterioles of MSG rats also displayed reduced nitric oxide (NO) production along with increased reactive oxygen species (ROS) generation; these were corrected by BH4 and either L-NAME or superoxide dismutase, respectively. The protein expression of eNOS and cyclooxygenase (COX)-2 was increased in mesenteric arterioles from MSG rats. CONCLUSION Obesity/insulin resistance has a detrimental impact on vascular function. Reduced NO bioavailability and increased ROS generation from uncoupled eNOS and imbalanced release of COX products from COX-2 play a critical role in the development of these vascular alterations.


Clinics | 2009

Mesenteric microcirculatory dysfunctions and translocation of indigenous bacteria in a rat model of strangulated small bowel obstruction

Fernando Luiz Zanoni; Simon Benabou; Karin Vicente Greco; Ana Carolina Ramos Moreno; José Walber Miranda Costa Cruz; Fernando P. Filgueira; Marina Baquerizo Martinez; Luiz Francisco Poli de Figueiredo; Mauricio Rocha e Silva; Paulina Sannomiya

PRUPOSE Bacterial translocation has been shown to occur in critically ill patients after extensive trauma, shock, sepsis, or thermal injury. The present study investigates mesenteric microcirculatory dysfunctions, the bacterial translocation phenomenon, and hemodynamic/metabolic disturbances in a rat model of intestinal obstruction and ischemia. METHODS Anesthetized (pentobarbital 50 mg/kg, i.p.) male Wistar rats (250–350 g) were submitted to intestinal obstruction or laparotomy without intestinal obstruction (Sham) and were evaluated 24 hours later. Bacterial translocation was assessed by bacterial culture of the mesenteric lymph nodes (MLN), liver, spleen, and blood. Leukocyte-endothelial interactions in the mesenteric microcirculation were assessed by intravital microscopy, and P-selectin and intercellular adhesion molecule (ICAM)-1 expressions were quantified by immunohistochemistry. Hematocrit, blood gases, lactate, glucose, white blood cells, serum urea, creatinine, bilirubin, and hepatic enzymes were measured. RESULTS About 86% of intestinal obstruction rats presented positive cultures for E. coli in samples of the mesenteric lymph nodes, liver, and spleen, and 57% had positive hemocultures. In comparison to the Sham rats, intestinal obstruction induced neutrophilia and increased the number of rolling (~2-fold), adherent (~5-fold), and migrated leukocytes (~11-fold); this increase was accompanied by an increased expression of P-selectin (~2-fold) and intercellular adhesion molecule-1 (~2-fold) in the mesenteric microcirculation. Intestinal obstruction rats exhibited decreased PaCO2, alkalosis, hyperlactatemia, and hyperglycemia, and increased blood potassium, hepatic enzyme activity, serum urea, creatinine, and bilirubin. A high mortality rate was observed after intestinal obstruction (83% at 72 h vs. 0% in Sham rats). CONCLUSION Intestinal obstruction and ischemia in rats is a relevant model for the in vivo study of mesenteric microcirculatory dysfunction and the occurrence of bacterial translocation. This model parallels the events implicated in multiple organ dysfunction (MOD) and death.


Steroids | 2013

Conjugated equine estrogen treatment corrected the exacerbated aorta oxidative stress in ovariectomized spontaneously hypertensive rats

Graziela S. Ceravolo; Fernando P. Filgueira; Tiago J. Costa; Nubia S. Lobato; Andreia Zago Chignalia; Priscila Xavier de Araujo; Rita C. Tostes; Ana Paula Dantas; Zuleica B. Fortes; Maria Helena C. Carvalho

OBJECTIVE The increased risk of cardiovascular diseases in postmenopausal women has been linked to the decrease in plasma estrogen levels. Preparation of conjugate equine estrogens (CEE) is one of the most routinely used hormone therapy in postmenopausal women. However, studies on the vascular effects of CEE are still sparse and the mechanism of action is not completely elucidated. In this context, we have determined the effects of CEE in the vascular oxidative stress observed in ovariectomyzed (OVX) spontaneously hypertensive rats (SHR). Mechanisms by which CEE interferes with redox-sensitive pathways and endothelial function were also determined. RESULTS Aortas from OVX rats exhibited increased generation of reactive oxygen species (ROS), NADPH oxidase activity and reduced catalase protein expression, compared to aortas from sham SHR. Endothelium-intact aortic rings from OVX were hyperreactive to NE when compared to Sham aortas. This hyperreactivity was corrected by superoxide dismutase (SOD), catalase, and endothelium removal. Treatment of OVX-SHR with CEE reduced vascular ROS generation, NADPH oxidase activity, enhanced SOD and catalase expression and also corrected the NE-hyperreactivity in aortic rings from OVX-SHR. CONCLUSION Our study indicates a potential benefit of CEE therapy through a mechanism that involves reduction in oxidative stress, improving endothelial function in OVX hypertensive rats.


Life Sciences | 2012

The adipokine chemerin augments vascular reactivity to contractile stimuli via activation of the MEK-ERK1/2 pathway.

N.S. Lobato; Karla B. Neves; Fernando P. Filgueira; Zuleica B. Fortes; M.H.C. Carvalho; R.C. Webb; Ana M. de Oliveira; R.C. Tostes

AIMS Cytokines interfere with signaling pathways and mediators of vascular contraction. Endothelin-1 (ET-1) plays a major role on vascular dysfunction in conditions characterized by increased circulating levels of adipokines. In the present study we tested the hypothesis that the adipokine chemerin increases vascular contractile responses via activation of ET-1/ET-1 receptors-mediated pathways. MAIN METHODS Male, 10-12 week-old Wistar rats were used. Endothelium-intact and endothelium-denuded aortic rings were incubated with chemerin (0.5 ng/mL or 5 ng/mL, for 1 or 24h), and isometric contraction was recorded. Protein expression was determined by Western blotting. KEY FINDINGS Constrictor responses to phenylephrine (PE) and ET-1 were increased in vessels treated for 1h with chemerin. Chemerin incubation for 24h decreased PE contractile response whereas it increased the sensitivity to ET-1. Endothelium removal significantly potentiated chemerin effects on vascular contractile responses to PE and ET-1. Incubation with either an ERK1/2 inhibitor (PD98059) or ETA antagonist (BQ123) abolished chemerin effects on PE- and ET-1-induced vasoconstriction. Phosphorylation of MEK1/2 and ERK1/2 was significantly increased in vessels treated with chemerin for 1 and 24h. Phosphorylation of these proteins was further increased in vessels incubated with ET-1 plus chemerin. ET-1 increased MEK1/2, ERK1/2 and MKP1 protein expression to values observed in vessels treated with chemerin. SIGNIFICANCE Chemerin increases contractile responses to PE and ET-1 via ERK1/2 activation. Our study contributes to a better understanding of the mechanisms by which the adipose tissue affects vascular function and, consequently, the vascular alterations present in obesity and related diseases.


Brazilian Journal of Medical and Biological Research | 2012

Mechanisms of endothelial dysfunction in obesity-associated hypertension

Nubia S. Lobato; Fernando P. Filgueira; Eliana H. Akamine; R.C. Tostes; M.H.C. Carvalho; Zuleica B. Fortes

Obesity is strongly associated with high blood pressure, dyslipidemia, and type 2 diabetes. These conditions synergistically increase the risk of cardiovascular events. A number of central and peripheral abnormalities can explain the development or maintenance of high blood pressure in obesity. Of great interest is endothelial dysfunction, considered to be a primary risk factor in the development of hypertension. Additional mechanisms also related to endothelial dysfunction have been proposed to mediate the development of hypertension in obese individuals. These include: increase in both peripheral vasoconstriction and renal tubular sodium reabsorption, increased sympathetic activity and overactivation of both the renin-angiotensin system and the endocannabinoid system and insulin resistance. The discovery of new mechanisms regulating metabolic and vascular function and a better understanding of how vascular function can be influenced by these systems would facilitate the development of new therapies for treatment of obesity-associated hypertension.


Life Sciences | 2012

Improvement of metabolic parameters and vascular function by metformin in obese non-diabetic rats

Nubia S. Lobato; Fernando P. Filgueira; G.N. Hagihara; Eliana H. Akamine; J.R. Pariz; R.C. Tostes; Maria Helena C. Carvalho; Zuleica B. Fortes

AIMS Metformin is an insulin sensitizing agent with beneficial effects in diabetic patients on glycemic levels and in the cardiovascular system. We examined whether the metabolic changes and the vascular dysfunction in monosodium glutamate-induced obese non-diabetic (MSG) rats might be improved by metformin. MAIN METHODS 16 week-old MSG rats were treated with metformin for 15 days and compared with age-matched untreated MSG and non-obese non-diabetic rats (control). Blood pressure, insulin sensitivity, vascular reactivity and prostanoid release in the perfused mesenteric arteriolar bed as well as nitric oxide production and reactive oxygen species generation in isolated mesenteric arteries were analyzed. KEY FINDINGS 18-week-old MSG rats displayed higher Lee index, fat accumulation, dyslipidemia, insulin resistance and hyperinsulinemia. Metformin treatment improved these alterations. The norepinephrine-induced response, increased in the mesenteric arteriolar bed from MSG rats, was corrected by metformin. Indomethacin corrected the enhanced contractile response in MSG rats but did not affect metformin effects. The sensitivity to acetylcholine, reduced in MSG rats, was also corrected by metformin. Indomethacin corrected the reduced sensitivity to acetylcholine in MSG rats but did not affect metformin effects. The sensitivity to sodium nitroprusside was increased in preparations from metformin-treated rats. Metformin treatment restored both the reduced PGI2/TXA2 ratio and the increased reactive oxygen species generation in preparations from MSG rats. SIGNIFICANCE Metformin improved the vascular function in MSG rats through reduction in reactive oxygen species generation, modulation of membrane hyperpolarization, correction of the unbalanced prostanoids release and increase in the sensitivity of the smooth muscle to nitric oxide.


Clinical Science | 2012

STIM1/Orai1 contributes to sex differences in vascular responses to calcium in spontaneously hypertensive rats

Fernanda R.C. Giachini; Victor V. Lima; Fernando P. Filgueira; Anne M. Dorrance; Maria Helena C. Carvalho; Zuleica B. Fortes; R. Clinton Webb; Rita C. Tostes

Sex differences in Ca2+-dependent signalling and homoeostasis in the vasculature of hypertensive rats are well characterized. However, sex-related differences in SOCE (store-operated Ca2+ entry) have been minimally investigated. We hypothesized that vascular protection in females, compared with males, reflects decreased Ca2+ mobilization due to diminished activation of Orai1/STIM1 (stromal interaction molecule 1). In addition, we investigated whether ovariectomy in females affects the activation of the Orai1/STIM1 pathway. Endothelium-denuded aortic rings from male and female SHRSP (stroke-prone spontaneously hypertensive rats) and WKY (Wistar-Kyoto) rats and from OVX (ovariectomized) or sham female SHRSP and WKY rats were used to functionally evaluate Ca2+ influx-induced contractions. Compared with females, aorta from male SHRSP displayed: (i) increased contraction during the Ca2+-loading period; (ii) similar transient contraction during Ca2+ release from the intracellular stores; (iii) increased activation of STIM1 and Orai1, as shown by the blockade of STIM1 and Orai1 with neutralizing antibodies, which reversed the sex differences in contraction during the Ca2+-loading period; and (iv) increased expression of STIM1 and Orai1. Additionally, we found that aortas from OVX-SHRSP showed increased contraction during the Ca2+-loading period and increased Orai1 expression, but no changes in the SR (sarcoplasmic reticulum)-buffering capacity or STIM1 expression. These findings suggest that augmented activation of STIM1/Orai1 in aortas from male SHRSP represents a mechanism that contributes to sex-related impaired control of intracellular Ca2+ levels. Furthermore, female sex hormones may negatively modulate the STIM/Orai1 pathway, contributing to vascular protection observed in female rats.


Vascular Pharmacology | 2016

H2O2 generated from mitochondrial electron transport chain in thoracic perivascular adipose tissue is crucial for modulation of vascular smooth muscle contraction.

Rafael Menezes da Costa; Fernando P. Filgueira; Rita C. Tostes; Maria Helena C. Carvalho; Eliana H. Akamine; Nubia S. Lobato

The perivascular adipose tissue (PVAT) releases a variety of factors that affect vascular function. PVAT in the thoracic aorta shares characteristics with the brown adipose tissue, including a large amount of mitochondria. PVAT-derived factors influence both endothelial and smooth muscle function via several signaling mechanisms including the release/generation of reactive nitrogen and oxygen species. Considering the importance of reactive oxygen species (ROS) on vascular function and that mitochondria are an important source of ROS, we hypothesized that mitochondria-derived ROS in the PVAT modulates vascular reactivity. Vascular reactivity to norephinephrine (NE) was evaluated in thoracic aortic rings, with or without endothelium and/or PVAT, from male Wistar rats. Mitochondrial uncoupling, as well as hydrogen peroxide (H2O2) removal, increased the contraction in vessels surrounded by PVAT. PVAT stimulated with NE exhibited increased protein expression, determined by Western blot analysis, of manganese superoxide dismutase (Mn-SOD) and decreased protein expression of catalase. Ultimately, NE increased superoxide anion (O2(-)) generation in PVAT via increases in intracellular calcium. These results clearly demonstrate that mitochondrial electron transport chain (mETC) in PVAT contributes to modulation of aortic muscle contraction by generating higher amounts of O2(-) that is, in turn, dismutated to hydrogen peroxide, which then acts as a pivotal signaling molecule regulating vascular smooth muscle contraction.


Evidence-based Complementary and Alternative Medicine | 2012

Endothelium-Dependent Vasorelaxant Effect of Butanolic Fraction from Caryocar brasiliense Camb. Leaves in Rat Thoracic Aorta

Lais Moraes de Oliveira; Aline Gabriela Rodrigues; Elaine Fernanda da Silva; Letícia Bonancio Cerqueira; Carlos H. Castro; Gustavo Rodrigues Pedrino; Maria Helena C. Carvalho; Roberto Pontarolo; Elson Alves Costa; Francinete Ramos Campos; Fernando P. Filgueira; Paulo César Ghedini

Caryocar brasiliense Camb. “pequi” is a native plant from the Cerrado region of Brazil that contains bioactive components reported to be antioxidant agents. Previous work has demonstrated that dietary supplementation with pequi decreased the arterial pressure of volunteer athletes. We found that the crude hydroalcoholic extract (CHE) of C. brasiliense leaves relaxed, in a concentration-dependent manner, rat aortic rings precontracted with phenylephrine, and that the butanolic fraction (BF) produced an effect similar to that of the CHE. Aortic relaxation induced by BF was abolished by endothelium removal, by incubation of the nitric oxide synthase inhibitor L-NAME, or the soluble guanylatecyclase inhibitor ODQ. However, incubation with atropine and pyrilamine had no effect on the BF-induced vasorelaxation. Moreover, this effect was not inhibited by indomethacin and tetraethylammonium. The concentration-response curve to calcium in denuded-endothelium rings was not modified after incubation with BF, and the vasorelaxation by BF in endothelium-intact rings precontracted with KCl was abolished after incubation with L-NAME. In addition, administration of BF in anesthetized rats resulted in a reversible hypotension. The results reveal that C. brasiliense possesses both in vivo and in vitro activities and that the vascular effect of BF involves stimulation of the nitric oxide/cyclic GMP pathway.


Vascular Pharmacology | 2016

The vasorelaxant effect of gallic acid involves endothelium-dependent and -independent mechanisms.

Lais Moraes de Oliveira; Thiago Sardinha de Oliveira; Rafael Menezes da Costa; Eric de Souza Gil; Elson Alves Costa; Rita de Cassia Aleixo Tostes Passaglia; Fernando P. Filgueira; Paulo César Ghedini

The mechanisms of action involved in the vasorelaxant effect of gallic acid (GA) were examined in the isolated rat thoracic aorta. GA exerted a relaxant effect in the highest concentrations (0.4-10mM) in both endothelium-intact and endothelium-denuded aortic rings. Pre-incubation with L-NAME, ODQ, calmidazolium, TEA, 4-aminopyridine, and barium chloride significantly reduced the pEC50 values. Moreover, this effect was not modified by indomethacin, wortmannin, PP2, glibenclamide, or paxillin. Pre-incubation of GA (1, 3, and 10mM) in a Ca(2+)-free Krebs solution attenuated CaCl2-induced contractions and blocked BAY K8644-induced vascular contractions, but it did not inhibit a contraction induced by the release of Ca(2+) from the sarcoplasmatic reticulum stores. In addition, a Western blot analysis showed that GA induces phosphorylation of eNOS in rat thoracic aorta. These results suggest that GA induces relaxation in rat aortic rings through an endothelium-dependent pathway, resulting in eNOS phosphorylation and opening potassium channels. Additionally, the relaxant effect by an endothelium-independent pathway involves the blockade of the Ca(2+) influx via L-type Ca(2+) channels.

Collaboration


Dive into the Fernando P. Filgueira's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rita C. Tostes

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R.C. Tostes

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Elson Alves Costa

Universidade Federal de Goiás

View shared research outputs
Top Co-Authors

Avatar

Lais Moraes de Oliveira

Universidade Federal de Goiás

View shared research outputs
Top Co-Authors

Avatar

Paulo César Ghedini

Universidade Federal de Goiás

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge