Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eline van der Burg is active.

Publication


Featured researches published by Eline van der Burg.


Proceedings of the National Academy of Sciences of the United States of America | 2008

High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs

Sven Rottenberg; Janneke E. Jaspers; Ariena Kersbergen; Eline van der Burg; Anders O.H. Nygren; Serge A.L. Zander; Patrick W. B. Derksen; Michiel de Bruin; John Zevenhoven; Alan Lau; Robert Boulter; Aaron Cranston; Mark J. O'Connor; Niall Morrison Barr Martin; Piet Borst; Jos Jonkers

Whereas target-specific drugs are available for treating ERBB2-overexpressing and hormone receptor-positive breast cancers, no tailored therapy exists for hormone receptor- and ERBB2-negative (“triple-negative”) mammary carcinomas. Triple-negative tumors account for 15% of all breast cancers and frequently harbor defects in DNA double-strand break repair through homologous recombination (HR), such as BRCA1 dysfunction. The DNA-repair defects characteristic of BRCA1-deficient cells confer sensitivity to poly(ADP-ribose) polymerase 1 (PARP1) inhibition, which could be relevant to treatment of triple-negative tumors. To evaluate PARP1 inhibition in a realistic in vivo setting, we tested the PARP inhibitor AZD2281 in a genetically engineered mouse model (GEMM) for BRCA1-associated breast cancer. Treatment of tumor-bearing mice with AZD2281 inhibited tumor growth without signs of toxicity, resulting in strongly increased survival. Long-term treatment with AZD2281 in this model did result in the development of drug resistance, caused by up-regulation of Abcb1a/b genes encoding P-glycoprotein efflux pumps. This resistance to AZD2281 could be reversed by coadministration of the P-glycoprotein inhibitor tariquidar. Combination of AZD2281 with cisplatin or carboplatin increased the recurrence-free and overall survival, suggesting that AZD2281 potentiates the effect of these DNA-damaging agents. Our results demonstrate in vivo efficacy of AZD2281 against BRCA1-deficient breast cancer and illustrate how GEMMs of cancer can be used for preclinical evaluation of novel therapeutics and for testing ways to overcome or circumvent therapy resistance.


Clinical Cancer Research | 2008

Selective Inhibition of BRCA2-Deficient Mammary Tumor Cell Growth by AZD2281 and Cisplatin

Bastiaan Evers; Rinske Drost; Eva Schut; Michiel de Bruin; Eline van der Burg; Patrick W. B. Derksen; Henne Holstege; Xiaoling Liu; Ellen van Drunen; H. Berna Beverloo; Graeme Cameron Murray Smith; Niall Morrison Barr Martin; Alan Lau; Mark J. O'Connor; Jos Jonkers

Purpose: To assess efficacy of the novel, selective poly(ADP-ribose) polymerase-1 (PARP-1) inhibitor AZD2281 against newly established BRCA2-deficient mouse mammary tumor cell lines and to determine potential synergy between AZD2281 and cisplatin. Experimental Design: We established and thoroughly characterized a panel of clonal cell lines from independent BRCA2-deficient mouse mammary tumors and BRCA2-proficient control tumors. Subsequently, we assessed sensitivity of these lines to conventional cytotoxic drugs and the novel PARP inhibitor AZD2281. Finally, in vitro combination studies were done to investigate interaction between AZD2281 and cisplatin. Results: Genetic, transcriptional, and functional analyses confirmed the successful isolation of BRCA2-deficient and BRCA2-proficient mouse mammary tumor cell lines. Treatment of these cell lines with 11 different anticancer drugs or with γ-irradiation showed that AZD2281, a novel and specific PARP inhibitor, caused the strongest differential growth inhibition of BRCA2-deficient versus BRCA2-proficient mammary tumor cells. Finally, drug combination studies showed synergistic cytotoxicity of AZD2281 and cisplatin against BRCA2-deficient cells but not against BRCA2-proficient control cells. Conclusion: We have successfully established the first set of BRCA2-deficient mammary tumor cell lines, which form an important addition to the existing preclinical models for BRCA-mutated breast cancer. The exquisite sensitivity of these cells to the PARP inhibitor AZD2281, alone or in combination with cisplatin, provides strong support for AZD2281 as a novel targeted therapeutic against BRCA-deficient cancers.


Disease Models & Mechanisms | 2011

Mammary-specific inactivation of E-cadherin and p53 impairs functional gland development and leads to pleomorphic invasive lobular carcinoma in mice

Patrick W. B. Derksen; Tanya M. Braumuller; Eline van der Burg; Marten Hornsveld; Elly Mesman; Jelle Wesseling; Paul Krimpenfort; Jos Jonkers

SUMMARY Breast cancer is the most common malignancy in women of the Western world. Even though a large percentage of breast cancer patients show pathological complete remission after standard treatment regimes, approximately 30–40% are non-responsive and ultimately develop metastatic disease. To generate a good preclinical model of invasive breast cancer, we have taken a tissue-specific approach to somatically inactivate p53 and E-cadherin, the cardinal cell-cell adhesion receptor that is strongly associated with tumor invasiveness. In breast cancer, E-cadherin is found mutated or otherwise functionally silenced in invasive lobular carcinoma (ILC), which accounts for 10–15% of all breast cancers. We show that mammary-specific stochastic inactivation of conditional E-cadherin and p53 results in impaired mammary gland function during pregnancy through the induction of anoikis resistance of mammary epithelium, resulting in loss of epithelial organization and a dysfunctional mammary gland. Moreover, combined inactivation of E-cadherin and p53 induced lactation-independent development of invasive and metastatic mammary carcinomas, which showed strong resemblance to human pleomorphic ILC. Dissemination patterns of mouse ILC mimic the human malignancy, showing metastasis to the gastrointestinal tract, peritoneum, lung, lymph nodes and bone. Our results confirm that loss of E-cadherin contributes to both mammary tumor initiation and metastasis, and establish a preclinical mouse model of human ILC that can be used for the development of novel intervention strategies to treat invasive breast cancer.


Cancer Research | 2009

Moderate Increase in Mdr1a/1b Expression Causes In vivo Resistance to Doxorubicin in a Mouse Model for Hereditary Breast Cancer

Marina Pajic; Jayasree K. Iyer; Ariena Kersbergen; Eline van der Burg; Anders O.H. Nygren; Jos Jonkers; Piet Borst; Sven Rottenberg

We have found previously that acquired doxorubicin resistance in a genetically engineered mouse model for BRCA1-related breast cancer was associated with increased expression of the mouse multidrug resistance (Mdr1) genes, which encode the drug efflux transporter ATP-binding cassette B1/P-glycoprotein (P-gp). Here, we show that even moderate increases of Mdr1 expression (as low as 5-fold) are sufficient to cause doxorubicin resistance. These moderately elevated tumor P-gp levels are below those found in some normal tissues, such as the gut. The resistant phenotype could be completely reversed by the third-generation P-gp inhibitor tariquidar, which provides a useful strategy to circumvent this type of acquired doxorubicin resistance. The presence of MDR1A in drug-resistant tumors with a moderate increase in Mdr1a transcripts could be shown with a newly generated chicken antibody against a mouse P-gp peptide. Our data show the usefulness of realistic preclinical models to characterize levels of Mdr1 gene expression that are sufficient to cause resistance.


Cancer Research | 2010

Sensitivity and Acquired Resistance of BRCA1;p53-Deficient Mouse Mammary Tumors to the Topoisomerase I Inhibitor Topotecan

Serge A.L. Zander; Ariena Kersbergen; Eline van der Burg; Niels de Water; Olaf van Tellingen; Sjöfn Gunnarsdottir; Janneke E. Jaspers; Marina Pajic; Anders O.H. Nygren; Jos Jonkers; Piet Borst; Sven Rottenberg

There is no tailored therapy yet for human basal-like mammary carcinomas. However, BRCA1 dysfunction is frequently present in these malignancies, compromising homology-directed DNA repair. This defect may serve as the tumors Achilles heel and make the tumor hypersensitive to DNA breaks. We have evaluated this putative synthetic lethality in a genetically engineered mouse model for BRCA1-associated breast cancer, using the topoisomerase I (Top1) poison topotecan as monotherapy and in combination with poly(ADP-ribose) polymerase inhibition by olaparib. All 20 tumors tested were topotecan sensitive, but response heterogeneity was substantial. Although topotecan increased mouse survival, all tumors eventually acquired resistance. As mechanisms of in vivo resistance, we identified overexpression of Abcg2/Bcrp and markedly reduced protein levels of the drug target Top1 (without altered mRNA levels). Tumor-specific genetic ablation of Abcg2 significantly increased overall survival of topotecan-treated animals (P < 0.001), confirming the in vivo relevance of ABCG2 for topotecan resistance in a novel approach. Despite the lack of ABCG2, a putative tumor-initiating cell marker, none of the 11 Abcg2(-/-);Brca1(-/-);p53(-/-) tumors were eradicated, not even by the combination topotecan-olaparib. We find that olaparib substantially increases topotecan toxicity in this model, and we suggest that this might also happen in humans.


Clinical Cancer Research | 2010

A high-throughput pharmaceutical screen identifies compounds with specific toxicity against BRCA2-deficient tumors.

Bastiaan Evers; Eva Schut; Eline van der Burg; Tanya M. Braumuller; David A. Egan; Henne Holstege; Pauline Edser; David J. Adams; Richard Wade-Martins; Peter Bouwman; Jos Jonkers

Purpose: Hereditary breast cancer is partly explained by germline mutations in BRCA1 and BRCA2. Although patients carry heterozygous mutations, their tumors have typically lost the remaining wild-type allele. Selectively targeting BRCA deficiency may therefore constitute an important therapeutic approach. Clinical trials applying this principle are underway, but it is unknown whether the compounds tested are optimal. It is therefore important to identify alternative compounds that specifically target BRCA deficiency and to test new combination therapies to establish optimal treatment strategies. Experimental Design: We did a high-throughput pharmaceutical screen on BRCA2-deficient mouse mammary tumor cells and isogenic controls with restored BRCA2 function. Subsequently, we validated positive hits in vitro and in vivo using mice carrying BRCA2-deficient mammary tumors. Results: Three alkylators—chlorambucil, melphalan, and nimustine—displayed strong and specific toxicity against BRCA2-deficient cells. In vivo, these showed heterogeneous but generally strong BRCA2-deficient antitumor activity, with melphalan and nimustine doing better than cisplatin and the poly-(ADP-ribose)-polymerase inhibitor olaparib (AZD2281) in this small study. In vitro drug combination experiments showed synergistic interactions between the alkylators and olaparib. Tumor intervention studies combining nimustine and olaparib resulted in recurrence-free survival exceeding 330 days in 3 of 5 animals tested. Conclusions: We generated and validated a platform for identification of compounds with specific activity against BRCA2-deficient cells that translates well to the preclinical setting. Our data call for the re-evaluation of alkylators, especially melphalan and nimustine, alone or in combination with the poly-(ADP-ribose)-polymerase inhibitors, for the treatment of breast cancers with a defective BRCA pathway. Clin Cancer Res; 16(1); 99–108


Cancer Research | 2012

Impact of Intertumoral Heterogeneity on Predicting Chemotherapy Response of BRCA1-Deficient Mammary Tumors

Sven Rottenberg; Marieke Anne Vollebergh; Bas de Hoon; Jorma J. de Ronde; Philip C. Schouten; Ariena Kersbergen; Serge A.L. Zander; Marina Pajic; Janneke E. Jaspers; Martijn Jonkers; Martin Loden; Wendy Sol; Eline van der Burg; Jelle Wesseling; Jean-Pierre Gillet; Michael M. Gottesman; Joost Gribnau; Lodewyk F. A. Wessels; Sabine C. Linn; Jos Jonkers; Piet Borst

The lack of markers to predict chemotherapy responses in patients poses a major handicap in cancer treatment. We searched for gene expression patterns that correlate with docetaxel or cisplatin response in a mouse model for breast cancer associated with BRCA1 deficiency. Array-based expression profiling did not identify a single marker gene predicting docetaxel response, despite an increase in Abcb1 (P-glycoprotein) expression that was sufficient to explain resistance in several poor responders. Intertumoral heterogeneity explained the inability to identify a predictive gene expression signature for docetaxel. To address this problem, we used a novel algorithm designed to detect differential gene expression in a subgroup of the poor responders that could identify tumors with increased Abcb1 transcript levels. In contrast, standard analytical tools, such as significance analysis of microarrays, detected a marker only if it correlated with response in a substantial fraction of tumors. For example, low expression of the Xist gene correlated with cisplatin hypersensitivity in most tumors, and it also predicted long recurrence-free survival of HER2-negative, stage III breast cancer patients treated with intensive platinum-based chemotherapy. Our findings may prove useful for selecting patients with high-risk breast cancer who could benefit from platinum-based therapy.


Journal of the National Cancer Institute | 2016

Mechanisms of Therapy Resistance in Patient-Derived Xenograft Models of BRCA1-Deficient Breast Cancer.

Petra ter Brugge; Petra Kristel; Eline van der Burg; Ute Boon; Michiel de Maaker; Esther H. Lips; Lennart Mulder; Julian R. de Ruiter; Catia Moutinho; Heidrun Gevensleben; Elisabetta Marangoni; Ian Majewski; Katarzyna Jóźwiak; Wigard P. Kloosterman; Markus J. van Roosmalen; Karen Duran; Frans B. L. Hogervorst; Nicholas C. Turner; Manel Esteller; Edwin Cuppen; Jelle Wesseling; Jos Jonkers

BACKGROUND Although BRCA1-deficient tumors are extremely sensitive to DNA-damaging drugs and poly(ADP-ribose) polymerase (PARP) inhibitors, recurrences do occur and, consequently, resistance to therapy remains a serious clinical problem. To study the underlying mechanisms, we induced therapy resistance in patient-derived xenograft (PDX) models of BRCA1-mutated and BRCA1-methylated triple-negative breast cancer. METHODS A cohort of 75 mice carrying BRCA1-deficient breast PDX tumors was treated with cisplatin, melphalan, nimustine, or olaparib, and treatment sensitivity was determined. In tumors that acquired therapy resistance, BRCA1 expression was investigated using quantitative real-time polymerase chain reaction and immunoblotting. Next-generation sequencing, methylation-specific multiplex ligation-dependent probe amplification (MLPA) and Target Locus Amplification (TLA)-based sequencing were used to determine mechanisms of BRCA1 re-expression in therapy-resistant tumors. RESULTS BRCA1 protein was not detected in therapy-sensitive tumors but was found in 31 out of 42 resistant cases. Apart from previously described mechanisms involving BRCA1-intragenic deletions and loss of BRCA1 promoter hypermethylation, a novel resistance mechanism was identified in four out of seven BRCA1-methylated PDX tumors that re-expressed BRCA1 but retained BRCA1 promoter hypermethylation. In these tumors, we found de novo gene fusions that placed BRCA1 under the transcriptional control of a heterologous promoter, resulting in re-expression of BRCA1 and acquisition of therapy resistance. CONCLUSIONS In addition to previously described clinically relevant resistance mechanisms in BRCA1-deficient tumors, we describe a novel resistance mechanism in BRCA1-methylated PDX tumors involving de novo rearrangements at the BRCA1 locus, demonstrating that BRCA1-methylated breast cancers may acquire therapy resistance via both epigenetic and genetic mechanisms.


International Journal of Cancer | 2015

Sorafenib synergizes with metformin in NSCLC through AMPK pathway activation

Floris H. Groenendijk; Wouter W. Mellema; Eline van der Burg; Eva Schut; Michael Hauptmann; Hugo M. Horlings; Stefan M. Willems; Michel M. van den Heuvel; Jos Jonkers; Egbert F. Smit; Ren e Bernards

The multikinase inhibitor sorafenib is under clinical investigation for the treatment of many solid tumors, but in most cases, the molecular target responsible for the clinical effect is unknown. Furthermore, enhancing the effectiveness of sorafenib using combination strategies is a major clinical challenge. Here, we identify sorafenib as an activator of AMP‐activated protein kinase (AMPK), in a manner that involves either upstream LKB1 or CAMKK2. We further show in a phase II clinical trial in KRAS mutant advanced non‐small cell lung cancer (NSCLC) with single agent sorafenib an improved disease control rate in patients using the antidiabetic drug metformin. Consistent with this, sorafenib and metformin act synergistically in inhibiting cellular proliferation in NSCLC in vitro and in vivo. A synergistic effect of both drugs is also seen on phosphorylation of the AMPKα activation site. Our results provide a rationale for the synergistic antiproliferative effects, given that AMPK inhibits downstream mTOR signaling. These data suggest that the combination of sorafenib with AMPK activators could have beneficial effects on tumor regression by AMPK pathway activation. The combination of metformin or other AMPK activators and sorafenib could be tested in prospective clinical trials.


Journal of Clinical Investigation | 2016

BRCA1185delAG tumors may acquire therapy resistance through expression of RING-less BRCA1

Rinske Drost; Kiranjit K. Dhillon; Hanneke van der Gulden; Ingrid van der Heijden; Inger Brandsma; Cristina Cruz; Dafni Chondronasiou; Marta Castroviejo-Bermejo; Ute Boon; Eva Schut; Eline van der Burg; Ellen Wientjens; Mark Pieterse; Christiaan Klijn; Sjoerd Klarenbeek; Fabricio Loayza-Puch; Ran Elkon; Liesbeth van Deemter; Sven Rottenberg; Marieke van de Ven; Dick H. W. Dekkers; Jeroen Demmers; Dik C. van Gent; Reuven Agami; Judith Balmaña; Violeta Serra; Toshiyasu Taniguchi; Peter Bouwman; Jos Jonkers

Heterozygous germline mutations in breast cancer 1 (BRCA1) strongly predispose women to breast cancer. BRCA1 plays an important role in DNA double-strand break (DSB) repair via homologous recombination (HR), which is important for tumor suppression. Although BRCA1-deficient cells are highly sensitive to treatment with DSB-inducing agents through their HR deficiency (HRD), BRCA1-associated tumors display heterogeneous responses to platinum drugs and poly(ADP-ribose) polymerase (PARP) inhibitors in clinical trials. It is unclear whether all pathogenic BRCA1 mutations have similar effects on the response to therapy. Here, we have investigated mammary tumorigenesis and therapy sensitivity in mice carrying the Brca1185stop and Brca15382stop alleles, which respectively mimic the 2 most common BRCA1 founder mutations, BRCA1185delAG and BRCA15382insC. Both the Brca1185stop and Brca15382stop mutations predisposed animals to mammary tumors, but Brca1185stop tumors responded markedly worse to HRD-targeted therapy than did Brca15382stop tumors. Mice expressing Brca1185stop mutations also developed therapy resistance more rapidly than did mice expressing Brca15382stop. We determined that both murine Brca1185stop tumors and human BRCA1185delAG breast cancer cells expressed a really interesting new gene domain-less (RING-less) BRCA1 protein that mediated resistance to HRD-targeted therapies. Together, these results suggest that expression of RING-less BRCA1 may serve as a marker to predict poor response to DSB-inducing therapy in human cancer patients.

Collaboration


Dive into the Eline van der Burg's collaboration.

Top Co-Authors

Avatar

Jos Jonkers

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Eva Schut

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Sjoerd Klarenbeek

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Jelle Wesseling

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Peter Bouwman

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Marieke van de Ven

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Ute Boon

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ariena Kersbergen

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge