Sjoerd Klarenbeek
Netherlands Cancer Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sjoerd Klarenbeek.
Cancer Cell | 2011
Rinske Drost; Peter Bouwman; Sven Rottenberg; Ute Boon; Eva Schut; Sjoerd Klarenbeek; Christiaan Klijn; Ingrid van der Heijden; Hanneke van der Gulden; Ellen Wientjens; Mark Pieterse; Aurélie Catteau; Peter M. Green; Ellen Solomon; Joanna R. Morris; Jos Jonkers
Hereditary breast cancers are frequently caused by germline BRCA1 mutations. The BRCA1(C61G) mutation in the BRCA1 RING domain is a common pathogenic missense variant, which reduces BRCA1/BARD1 heterodimerization and abrogates its ubiquitin ligase activity. To investigate the role of BRCA1 RING function in tumor suppression and therapy response, we introduced the Brca1(C61G) mutation in a conditional mouse model for BRCA1-associated breast cancer. In contrast to BRCA1-deficient mammary carcinomas, tumors carrying the Brca1(C61G) mutation responded poorly to platinum drugs and PARP inhibition and rapidly developed resistance while retaining the Brca1(C61G) mutation. These findings point to hypomorphic activity of the BRCA1-C61G protein that, although unable to prevent tumor development, affects response to therapy.
Genes & Development | 2016
Stefano Annunziato; Sjors M. Kas; Micha Nethe; Hatice Yücel; Jessica Del Bravo; Colin Pritchard; Rahmen Bin Ali; Bas van Gerwen; Bjorn Siteur; Anne Paulien Drenth; Eva Schut; Marieke van de Ven; Mirjam C. Boelens; Sjoerd Klarenbeek; Ivo J. Huijbers; Martine H. van Miltenburg; Jos Jonkers
Large-scale sequencing studies are rapidly identifying putative oncogenic mutations in human tumors. However, discrimination between passenger and driver events in tumorigenesis remains challenging and requires in vivo validation studies in reliable animal models of human cancer. In this study, we describe a novel strategy for in vivo validation of candidate tumor suppressors implicated in invasive lobular breast carcinoma (ILC), which is hallmarked by loss of the cell-cell adhesion molecule E-cadherin. We describe an approach to model ILC by intraductal injection of lentiviral vectors encoding Cre recombinase, the CRISPR/Cas9 system, or both in female mice carrying conditional alleles of the Cdh1 gene, encoding for E-cadherin. Using this approach, we were able to target ILC-initiating cells and induce specific gene disruption of Pten by CRISPR/Cas9-mediated somatic gene editing. Whereas intraductal injection of Cas9-encoding lentiviruses induced Cas9-specific immune responses and development of tumors that did not resemble ILC, lentiviral delivery of a Pten targeting single-guide RNA (sgRNA) in mice with mammary gland-specific loss of E-cadherin and expression of Cas9 efficiently induced ILC development. This versatile platform can be used for rapid in vivo testing of putative tumor suppressor genes implicated in ILC, providing new opportunities for modeling invasive lobular breast carcinoma in mice.
Cancer Research | 2013
Ron C.J. Schackmann; Sjoerd Klarenbeek; Eva J. Vlug; Suzan Stelloo; Miranda van Amersfoort; Milou Tenhagen; Tanya M. Braumuller; Jeroen Vermeulen; Petra van der Groep; Ton Peeters; Elsken van der Wall; Paul J. van Diest; Jos Jonkers; Patrick W. B. Derksen
Metastatic breast cancer remains the chief cause of cancer-related death among women in the Western world. Although loss of cell-cell adhesion is key to breast cancer progression, little is known about the underlying mechanisms that drive tumor invasion and metastasis. Here, we show that somatic loss of p120-catenin (p120) in a conditional mouse model of noninvasive mammary carcinoma results in formation of stromal-dense tumors that resemble human metaplastic breast cancer and metastasize to lungs and lymph nodes. Loss of p120 in anchorage-dependent breast cancer cell lines strongly promoted anoikis resistance through hypersensitization of growth factor receptor (GFR) signaling. Interestingly, p120 deletion also induced secretion of inflammatory cytokines, a feature that likely underlies the formation of the prometastatic microenvironment in p120-negative mammary carcinomas. Our results establish a preclinical platform to develop tailored intervention regimens that target GFR signals to treat p120-negative metastatic breast cancers.
BMC Cancer | 2010
Henne Holstege; Erik H. van Beers; Arno Velds; Xiaoling Liu; Simon A. Joosse; Sjoerd Klarenbeek; Eva Schut; Ron M. Kerkhoven; Christiaan Klijn; Lodewyk F. A. Wessels; Petra M. Nederlof; Jos Jonkers
BackgroundGenomic gains and losses are a result of genomic instability in many types of cancers. BRCA1- and BRCA2-mutated breast cancers are associated with increased amounts of chromosomal aberrations, presumably due their functions in genome repair. Some of these genomic aberrations may harbor genes whose absence or overexpression may give rise to cellular growth advantage. So far, it has not been easy to identify the driver genes underlying gains and losses. A powerful approach to identify these driver genes could be a cross-species comparison of array comparative genomic hybridization (aCGH) data from cognate mouse and human tumors. Orthologous regions of mouse and human tumors that are commonly gained or lost might represent essential genomic regions selected for gain or loss during tumor development.MethodsTo identify genomic regions that are associated with BRCA1- and BRCA2-mutated breast cancers we compared aCGH data from 130 mouse Brca1Δ/Δ;p53Δ/Δ, Brca2Δ/Δ;p53Δ/Δand p53Δ/Δmammary tumor groups with 103 human BRCA1-mutated, BRCA2-mutated and non-hereditary breast cancers.ResultsOur genome-wide cross-species analysis yielded a complete collection of loci and genes that are commonly gained or lost in mouse and human breast cancer. Principal common CNAs were the well known MYC-associated gain and RB1/INTS6-associated loss that occurred in all mouse and human tumor groups, and the AURKA-associated gain occurred in BRCA2-related tumors from both species. However, there were also important differences between tumor profiles of both species, such as the prominent gain on chromosome 10 in mouse Brca2Δ/Δ;p53Δ/Δtumors and the PIK3CA associated 3q gain in human BRCA1-mutated tumors, which occurred in tumors from one species but not in tumors from the other species. This disparity in recurrent aberrations in mouse and human tumors might be due to differences in tumor cell type or genomic organization between both species.ConclusionsThe selection of the oncogenome during mouse and human breast tumor development is markedly different, apart from the MYC gain and RB1-associated loss. These differences should be kept in mind when using mouse models for preclinical studies.
Journal of Clinical Investigation | 2016
Rinske Drost; Kiranjit K. Dhillon; Hanneke van der Gulden; Ingrid van der Heijden; Inger Brandsma; Cristina Cruz; Dafni Chondronasiou; Marta Castroviejo-Bermejo; Ute Boon; Eva Schut; Eline van der Burg; Ellen Wientjens; Mark Pieterse; Christiaan Klijn; Sjoerd Klarenbeek; Fabricio Loayza-Puch; Ran Elkon; Liesbeth van Deemter; Sven Rottenberg; Marieke van de Ven; Dick H. W. Dekkers; Jeroen Demmers; Dik C. van Gent; Reuven Agami; Judith Balmaña; Violeta Serra; Toshiyasu Taniguchi; Peter Bouwman; Jos Jonkers
Heterozygous germline mutations in breast cancer 1 (BRCA1) strongly predispose women to breast cancer. BRCA1 plays an important role in DNA double-strand break (DSB) repair via homologous recombination (HR), which is important for tumor suppression. Although BRCA1-deficient cells are highly sensitive to treatment with DSB-inducing agents through their HR deficiency (HRD), BRCA1-associated tumors display heterogeneous responses to platinum drugs and poly(ADP-ribose) polymerase (PARP) inhibitors in clinical trials. It is unclear whether all pathogenic BRCA1 mutations have similar effects on the response to therapy. Here, we have investigated mammary tumorigenesis and therapy sensitivity in mice carrying the Brca1185stop and Brca15382stop alleles, which respectively mimic the 2 most common BRCA1 founder mutations, BRCA1185delAG and BRCA15382insC. Both the Brca1185stop and Brca15382stop mutations predisposed animals to mammary tumors, but Brca1185stop tumors responded markedly worse to HRD-targeted therapy than did Brca15382stop tumors. Mice expressing Brca1185stop mutations also developed therapy resistance more rapidly than did mice expressing Brca15382stop. We determined that both murine Brca1185stop tumors and human BRCA1185delAG breast cancer cells expressed a really interesting new gene domain-less (RING-less) BRCA1 protein that mediated resistance to HRD-targeted therapies. Together, these results suggest that expression of RING-less BRCA1 may serve as a marker to predict poor response to DSB-inducing therapy in human cancer patients.
Genome Biology | 2010
Ignacio Varela; Christiaan Klijn; Phillip J. Stephens; Laura Mudie; Lucy Stebbings; Danushka Galappaththige; Hanneke van der Gulden; Eva Schut; Sjoerd Klarenbeek; Peter J. Campbell; Lodewyk F. A. Wessels; Michael R. Stratton; Jos Jonkers; P. Andrew Futreal; David J. Adams
BackgroundHere we present the first paired-end sequencing of tumors from genetically engineered mouse models of cancer to determine how faithfully these models recapitulate the landscape of somatic rearrangements found in human tumors. These were models of Trp53-mutated breast cancer, Brca1- and Brca2-associated hereditary breast cancer, and E-cadherin (Cdh1) mutated lobular breast cancer.ResultsWe show that although Brca1- and Brca2-deficient mouse mammary tumors have a defect in the homologous recombination pathway, there is no apparent difference in the type or frequency of somatic rearrangements found in these cancers when compared to other mouse mammary cancers, and tumors from all genetic backgrounds showed evidence of microhomology-mediated repair and non-homologous end-joining processes. Importantly, mouse mammary tumors were found to carry fewer structural rearrangements than human mammary cancers and expressed in-frame fusion genes. Like the fusion genes found in human mammary tumors, these were not recurrent. One mouse tumor was found to contain an internal deletion of exons of the Lrp1b gene, which led to a smaller in-frame transcript. We found internal in-frame deletions in the human ortholog of this gene in a significant number (4.2%) of human cancer cell lines.ConclusionsPaired-end sequencing of mouse mammary tumors revealed that they display significant heterogeneity in their profiles of somatic rearrangement but, importantly, fewer rearrangements than cognate human mammary tumors, probably because these cancers have been induced by strong driver mutations engineered into the mouse genome. Both human and mouse mammary cancers carry expressed fusion genes and conserved homozygous deletions.
Cancer Research | 2013
Chris W. Doornebal; Sjoerd Klarenbeek; Tanya M. Braumuller; Christiaan Klijn; Metamia Ciampricotti; Cheei-Sing Hau; Markus W. Hollmann; Jos Jonkers; Karin E. de Visser
Metastatic disease accounts for more than 90% of cancer-related deaths, but the development of effective antimetastatic agents has been hampered by the paucity of clinically relevant preclinical models of human metastatic disease. Here, we report the development of a mouse model of spontaneous breast cancer metastasis, which recapitulates key events in its formation and clinical course. Specifically, using the conditional K14cre;Cdh1(F/F);Trp53(F/F) model of de novo mammary tumor formation, we orthotopically transplanted invasive lobular carcinoma (mILC) fragments into mammary glands of wild-type syngeneic hosts. Once primary tumors were established in recipient mice, we mimicked the clinical course of treatment by conducting a mastectomy. After surgery, recipient mice succumbed to widespread overt metastatic disease in lymph nodes, lungs, and gastrointestinal tract. Genomic profiling of paired mammary tumors and distant metastases showed that our model provides a unique tool to further explore the biology of metastatic disease. Neoadjuvant and adjuvant intervention studies using standard-of-care chemotherapeutics showed the value of this model in determining therapeutic agents that can target early- and late-stage metastatic disease. In obtaining a more accurate preclinical model of metastatic lobular breast cancer, our work offers advances supporting the development of more effective treatment strategies for metastatic disease.
Molecular Oncology | 2013
Sjoerd Klarenbeek; Martine H. van Miltenburg; Jos Jonkers
Breast cancer is the most common type of cancer in women. A substantial fraction of breast cancers have acquired mutations that lead to activation of the phosphoinositide 3‐kinase (PI3K) signaling pathway, which plays a central role in cellular processes that are essential in cancer, such as cell survival, growth, division and motility. Oncogenic mutations in the PI3K pathway generally involve either activating mutation of the gene encoding PI3K (PIK3CA) or AKT (AKT1), or loss or reduced expression of PTEN. Several kinases involved in PI3K signaling are being explored as a therapeutic targets for pharmacological inhibition. Despite the availability of a range of inhibitors, acquired resistance may limit the efficacy of single‐agent therapy. In this review we discuss the role of PI3K pathway mutations in human breast cancer and relevant genetically engineered mouse models (GEMMs), with special attention to the role of PI3K signaling in oncogenesis, in therapeutic response, and in resistance to therapy. Several sophisticated GEMMs have revealed the cause‐and‐effect relationships between PI3K pathway mutations and mammary oncogenesis. These GEMMs enable us to study the biology of tumors induced by activated PI3K signaling, as well as preclinical response and resistance to PI3K pathway inhibitors.
Nature Genetics | 2017
Sjors M. Kas; Julian R. de Ruiter; Koen Schipper; Stefano Annunziato; Eva Schut; Sjoerd Klarenbeek; Anne Paulien Drenth; Eline van der Burg; Christiaan Klijn; Jelle ten Hoeve; David J. Adams; Marco J. Koudijs; Jelle Wesseling; Micha Nethe; Lodewyk F. A. Wessels; Jos Jonkers
Invasive lobular carcinoma (ILC) is the second most common breast cancer subtype and accounts for 8–14% of all cases. Although the majority of human ILCs are characterized by the functional loss of E-cadherin (encoded by CDH1), inactivation of Cdh1 does not predispose mice to develop mammary tumors, implying that mutations in additional genes are required for ILC formation in mice. To identify these genes, we performed an insertional mutagenesis screen using the Sleeping Beauty transposon system in mice with mammary-specific inactivation of Cdh1. These mice developed multiple independent mammary tumors of which the majority resembled human ILC in terms of morphology and gene expression. Recurrent and mutually exclusive transposon insertions were identified in Myh9, Ppp1r12a, Ppp1r12b and Trp53bp2, whose products have been implicated in the regulation of the actin cytoskeleton. Notably, MYH9, PPP1R12B and TP53BP2 were also frequently aberrated in human ILC, highlighting these genes as drivers of a novel oncogenic pathway underlying ILC development.
Cell Reports | 2016
Mirjam C. Boelens; Micha Nethe; Sjoerd Klarenbeek; Julian R. de Ruiter; Eva Schut; Nicola Bonzanni; Amber L. Zeeman; Ellen Wientjens; Eline van der Burg; Lodewyk F. A. Wessels; Renée van Amerongen; Jos Jonkers
Summary Invasive lobular carcinoma (ILC) is an aggressive breast cancer subtype with poor response to chemotherapy. Besides loss of E-cadherin, a hallmark of ILC, genetic inactivation of PTEN is frequently observed in patients. Through concomitant Cre-mediated inactivation of E-cadherin and PTEN in mammary epithelium, we generated a mouse model of classical ILC (CLC), the main histological ILC subtype. While loss of E-cadherin induced cell dissemination and apoptosis, additional PTEN inactivation promoted cell survival and rapid formation of invasive mammary tumors that recapitulate the histological and molecular features, estrogen receptor (ER) status, growth kinetics, metastatic behavior, and tumor microenvironment of human CLC. Combined inactivation of E-cadherin and PTEN is sufficient to cause CLC development. These CLCs showed significant tumor regression upon BEZ235-mediated inhibition of PI3K signaling. In summary, this mouse model provides important insights into CLC development and suggests inhibition of phosphatidylinositol 3-kinase (PI3K) signaling as a potential therapeutic strategy for targeting CLC.