Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Bouwman is active.

Publication


Featured researches published by Peter Bouwman.


Nature Structural & Molecular Biology | 2010

53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers

Peter Bouwman; Amal Aly; Jose Miguel Escandell; Mark Pieterse; Jirina Bartkova; Hanneke van der Gulden; Sanne Hiddingh; Maria Thanasoula; Atul Kulkarni; Qifeng Yang; Bruce G. Haffty; Johanna Tommiska; Carl Blomqvist; Ronny Drapkin; David J. Adams; Heli Nevanlinna; Jiri Bartek; Madalena Tarsounas; Shridar Ganesan; Jos Jonkers

Germ-line mutations in breast cancer 1, early onset (BRCA1) result in predisposition to breast and ovarian cancer. BRCA1-mutated tumors show genomic instability, mainly as a consequence of impaired recombinatorial DNA repair. Here we identify p53-binding protein 1 (53BP1) as an essential factor for sustaining the growth arrest induced by Brca1 deletion. Depletion of 53BP1 abrogates the ATM-dependent checkpoint response and G2 cell-cycle arrest triggered by the accumulation of DNA breaks in Brca1-deleted cells. This effect of 53BP1 is specific to BRCA1 function, as 53BP1 depletion did not alleviate proliferation arrest or checkpoint responses in Brca2-deleted cells. Notably, loss of 53BP1 partially restores the homologous-recombination defect of Brca1-deleted cells and reverts their hypersensitivity to DNA-damaging agents. We find reduced 53BP1 expression in subsets of sporadic triple-negative and BRCA-associated breast cancers, indicating the potential clinical implications of our findings.


Molecular and Cellular Biology | 2006

Autotaxin, a Secreted Lysophospholipase D, Is Essential for Blood Vessel Formation during Development

Laurens A. van Meeteren; Paula Ruurs; Catelijne Stortelers; Peter Bouwman; Marga A. van Rooijen; Jean Philippe Pradère; Trevor R. Pettit; Michael J. O. Wakelam; Jean Sébastien Saulnier-Blache; Wouter H. Moolenaar; Jos Jonkers

ABSTRACT Autotaxin (ATX), or nucleotide pyrophosphatase-phosphodiesterase 2, is a secreted lysophospholipase D that promotes cell migration, metastasis, and angiogenesis. ATX generates lysophosphatidic acid (LPA), a lipid mitogen and motility factor that acts on several G protein-coupled receptors. Here we report that ATX-deficient mice die at embryonic day 9.5 (E9.5) with profound vascular defects in yolk sac and embryo resembling the Gα13 knockout phenotype. Furthermore, at E8.5, ATX-deficient embryos showed allantois malformation, neural tube defects, and asymmetric headfolds. The onset of these abnormalities coincided with increased expression of ATX and LPA receptors in normal embryos. ATX heterozygous mice appear healthy but show half-normal ATX activity and plasma LPA levels. Our results reveal a critical role for ATX in vascular development, indicate that ATX is the major LPA-producing enzyme in vivo, and suggest that the vascular defects in ATX-deficient embryos may be explained by loss of LPA signaling through Gα13.


Nature Reviews Cancer | 2012

The effects of deregulated DNA damage signalling on cancer chemotherapy response and resistance

Peter Bouwman; Jos Jonkers

Tumours with specific DNA repair defects can be completely dependent on back-up DNA repair pathways for their survival. This dependence can be exploited therapeutically to induce synthetic lethality in tumour cells. For instance, homologous recombination (HR)-deficient tumours can be effectively targeted by DNA double-strand break-inducing agents. However, not all HR-defective tumours respond equally well to this type of therapy. Tumour cells may acquire resistance by invoking biochemical mechanisms that reduce drug action or by acquiring additional alterations in DNA damage response pathways. A thorough understanding of these processes is important for predicting treatment response and for the development of novel treatment strategies that prevent the emergence of therapy-resistant tumours.


Nature | 2015

REV7 counteracts DNA double-strand break resection and affects PARP inhibition

Guotai Xu; J. Ross Chapman; Inger Brandsma; Jingsong Yuan; Martin Mistrik; Peter Bouwman; Jirina Bartkova; Ewa Gogola; Daniël O. Warmerdam; Marco Barazas; Janneke E. Jaspers; Kenji Watanabe; Mark Pieterse; Ariena Kersbergen; Wendy Sol; Patrick H. N. Celie; Philip C. Schouten; Bram van den Broek; Ahmed M. Salman; Marja Nieuwland; Iris de Rink; Jorma J. de Ronde; Kees Jalink; Simon J. Boulton; Junjie Chen; Dik C. van Gent; Jiri Bartek; Jos Jonkers; Piet Borst; Sven Rottenberg

Error-free repair of DNA double-strand breaks (DSBs) is achieved by homologous recombination (HR), and BRCA1 is an important factor for this repair pathway. In the absence of BRCA1-mediated HR, the administration of PARP inhibitors induces synthetic lethality of tumour cells of patients with breast or ovarian cancers. Despite the benefit of this tailored therapy, drug resistance can occur by HR restoration. Genetic reversion of BRCA1-inactivating mutations can be the underlying mechanism of drug resistance, but this does not explain resistance in all cases. In particular, little is known about BRCA1-independent restoration of HR. Here we show that loss of REV7 (also known as MAD2L2) in mouse and human cell lines re-establishes CTIP-dependent end resection of DSBs in BRCA1-deficient cells, leading to HR restoration and PARP inhibitor resistance, which is reversed by ATM kinase inhibition. REV7 is recruited to DSBs in a manner dependent on the H2AX–MDC1–RNF8–RNF168–53BP1 chromatin pathway, and seems to block HR and promote end joining in addition to its regulatory role in DNA damage tolerance. Finally, we establish that REV7 blocks DSB resection to promote non-homologous end-joining during immunoglobulin class switch recombination. Our results reveal an unexpected crucial function of REV7 downstream of 53BP1 in coordinating pathological DSB repair pathway choices in BRCA1-deficient cells.


Cancer Cell | 2011

BRCA1 RING function is essential for tumor suppression but dispensable for therapy resistance.

Rinske Drost; Peter Bouwman; Sven Rottenberg; Ute Boon; Eva Schut; Sjoerd Klarenbeek; Christiaan Klijn; Ingrid van der Heijden; Hanneke van der Gulden; Ellen Wientjens; Mark Pieterse; Aurélie Catteau; Peter M. Green; Ellen Solomon; Joanna R. Morris; Jos Jonkers

Hereditary breast cancers are frequently caused by germline BRCA1 mutations. The BRCA1(C61G) mutation in the BRCA1 RING domain is a common pathogenic missense variant, which reduces BRCA1/BARD1 heterodimerization and abrogates its ubiquitin ligase activity. To investigate the role of BRCA1 RING function in tumor suppression and therapy response, we introduced the Brca1(C61G) mutation in a conditional mouse model for BRCA1-associated breast cancer. In contrast to BRCA1-deficient mammary carcinomas, tumors carrying the Brca1(C61G) mutation responded poorly to platinum drugs and PARP inhibition and rapidly developed resistance while retaining the Brca1(C61G) mutation. These findings point to hypomorphic activity of the BRCA1-C61G protein that, although unable to prevent tumor development, affects response to therapy.


Nature Structural & Molecular Biology | 2010

BRCA2 acts as a RAD51 loader to facilitate telomere replication and capping

Sophie Badie; Jose Miguel Escandell; Peter Bouwman; Ana Rita Carlos; Maria Thanasoula; Maria M. Gallardo; Anitha Suram; Isabel Jaco; Javier Benítez; Utz Herbig; Maria A. Blasco; Jos Jonkers; Madalena Tarsounas

The tumor suppressor protein BRCA2 is a key component of the homologous recombination pathway of DNA repair, acting as the loader of RAD51 recombinase at sites of double-strand breaks. Here we show that BRCA2 associates with telomeres during the S and G2 phases of the cell cycle and facilitates the loading of RAD51 onto telomeres. Conditional deletion of Brca2 and inhibition of Rad51 in mouse embryonic fibroblasts (MEFs), but not inactivation of Brca1, led to shortening of telomeres and accumulation of fragmented telomeric signals—a hallmark of telomere fragility that is associated with replication defects. These findings suggest that BRCA2-mediated homologous recombination reactions contribute to the maintenance of telomere length by facilitating telomere replication and imply that BRCA2 has an essential role in maintaining telomere integrity during unchallenged cell proliferation. Mouse mammary tumors that lacked Brca2 accumulated telomere dysfunction–induced foci. Human breast tumors in which BRCA2 was mutated had shorter telomeres than those in which BRCA1 was mutated, suggesting that the genomic instability in BRCA2-deficient tumors was due in part to telomere dysfunction.


Clinical Cancer Research | 2014

Molecular Pathways: How Can BRCA-Mutated Tumors Become Resistant to PARP Inhibitors?

Peter Bouwman; Jos Jonkers

PARP inhibition is synthetic lethal with defective DNA repair via homologous recombination. Phase I and II clinical trials show that PARP inhibitors are effective at well-tolerated doses and have antitumor activity for BRCA1- and BRCA2-associated cancers. However, not all patients respond equally well and tumors may eventually become resistant. Thus far, the only resistance mechanism that has been found in human tumors is genetic reversion that corrects or bypasses the original BRCA1- or BRCA2-inactivating mutation. However, data from fundamental and preclinical research suggest that resistance to PARP inhibitors may be induced by additional mechanisms involving hypomorphic activity of mutant BRCA1 alleles, upregulation of drug efflux pumps, and rewiring of the DNA damage response. Preclinical models will be instrumental to develop methods for adequate patient stratification, as well as treatment strategies that prevent or counteract resistance to PARP inhibitors. Clin Cancer Res; 20(3); 540–7. ©2013 AACR.


Cancer Discovery | 2013

A High-Throughput Functional Complementation Assay for Classification of BRCA1 Missense Variants

Peter Bouwman; Hanneke van der Gulden; Ingrid van der Heijden; Rinske Drost; Christiaan Klijn; Pramudita Prasetyanti; Mark Pieterse; Ellen Wientjens; Jost Seibler; Frans B. L. Hogervorst; Jos Jonkers

UNLABELLED Mutations in BRCA1 and BRCA2 account for the majority of hereditary breast and ovarian cancers, and therefore sequence analysis of both genes is routinely conducted in patients with early-onset breast cancer. Besides mutations that clearly abolish protein function or are known to increase cancer risk, a large number of sequence variants of uncertain significance (VUS) have been identified. Although several functional assays for BRCA1 VUSs have been described, thus far it has not been possible to conduct a high-throughput analysis in the context of the full-length protein. We have developed a relatively fast and easy cDNA-based functional assay to classify BRCA1 VUSs based on their ability to functionally complement BRCA1-deficient mouse embryonic stem cells. Using this assay, we have analyzed 74 unclassified BRCA1 missense mutants for which all predicted pathogenic variants are confined to the BRCA1 RING and BRCT domains. SIGNIFICANCE BRCA1 VUSs are frequently found in patients with hereditary breast or ovarian cancer and present a serious problem for clinical geneticists. This article describes the generation, validation, and application of a reliable high-throughput assay for the functional classification of BRCA1 sequence variants of uncertain significance.


Clinical Cancer Research | 2010

A high-throughput pharmaceutical screen identifies compounds with specific toxicity against BRCA2-deficient tumors.

Bastiaan Evers; Eva Schut; Eline van der Burg; Tanya M. Braumuller; David A. Egan; Henne Holstege; Pauline Edser; David J. Adams; Richard Wade-Martins; Peter Bouwman; Jos Jonkers

Purpose: Hereditary breast cancer is partly explained by germline mutations in BRCA1 and BRCA2. Although patients carry heterozygous mutations, their tumors have typically lost the remaining wild-type allele. Selectively targeting BRCA deficiency may therefore constitute an important therapeutic approach. Clinical trials applying this principle are underway, but it is unknown whether the compounds tested are optimal. It is therefore important to identify alternative compounds that specifically target BRCA deficiency and to test new combination therapies to establish optimal treatment strategies. Experimental Design: We did a high-throughput pharmaceutical screen on BRCA2-deficient mouse mammary tumor cells and isogenic controls with restored BRCA2 function. Subsequently, we validated positive hits in vitro and in vivo using mice carrying BRCA2-deficient mammary tumors. Results: Three alkylators—chlorambucil, melphalan, and nimustine—displayed strong and specific toxicity against BRCA2-deficient cells. In vivo, these showed heterogeneous but generally strong BRCA2-deficient antitumor activity, with melphalan and nimustine doing better than cisplatin and the poly-(ADP-ribose)-polymerase inhibitor olaparib (AZD2281) in this small study. In vitro drug combination experiments showed synergistic interactions between the alkylators and olaparib. Tumor intervention studies combining nimustine and olaparib resulted in recurrence-free survival exceeding 330 days in 3 of 5 animals tested. Conclusions: We generated and validated a platform for identification of compounds with specific activity against BRCA2-deficient cells that translates well to the preclinical setting. Our data call for the re-evaluation of alkylators, especially melphalan and nimustine, alone or in combination with the poly-(ADP-ribose)-polymerase inhibitors, for the treatment of breast cancers with a defective BRCA pathway. Clin Cancer Res; 16(1); 99–108


Cancer Research | 2016

The BRCA1-Δ11q Alternative Splice Isoform Bypasses Germline Mutations and Promotes Therapeutic Resistance to PARP Inhibition and Cisplatin

Yifan Wang; Andrea J. Bernhardy; Cristina Cruz; John J. Krais; Joseph Nacson; Emmanuelle Nicolas; Suraj Peri; Hanneke van der Gulden; Ingrid van der Heijden; Shane W. O'Brien; Yong Zhang; Maribel I. Harrell; Shawn F. Johnson; Francisco José Candido dos Reis; Paul Pharoah; Beth Y. Karlan; Charlie Gourley; Diether Lambrechts; Georgia Chenevix-Trench; Håkan Olsson; Javier Benitez; Mark H. Greene; Martin Gore; Robert L. Nussbaum; Siegal Sadetzki; Simon A. Gayther; Susanne K. Kjaer; kConFab Investigators; Alan D. D'Andrea; Geoffrey I. Shapiro

Breast and ovarian cancer patients harboring BRCA1/2 germline mutations have clinically benefitted from therapy with PARP inhibitor (PARPi) or platinum compounds, but acquired resistance limits clinical impact. In this study, we investigated the impact of mutations on BRCA1 isoform expression and therapeutic response. Cancer cell lines and tumors harboring mutations in exon 11 of BRCA1 express a BRCA1-Δ11q splice variant lacking the majority of exon 11. The introduction of frameshift mutations to exon 11 resulted in nonsense-mediated mRNA decay of full-length, but not the BRCA1-Δ11q isoform. CRISPR/Cas9 gene editing as well as overexpression experiments revealed that the BRCA1-Δ11q protein was capable of promoting partial PARPi and cisplatin resistance relative to full-length BRCA1, both in vitro and in vivo Furthermore, spliceosome inhibitors reduced BRCA1-Δ11q levels and sensitized cells carrying exon 11 mutations to PARPi treatment. Taken together, our results provided evidence that cancer cells employ a strategy to remove deleterious germline BRCA1 mutations through alternative mRNA splicing, giving rise to isoforms that retain residual activity and contribute to therapeutic resistance. Cancer Res; 76(9); 2778-90. ©2016 AACR.

Collaboration


Dive into the Peter Bouwman's collaboration.

Top Co-Authors

Avatar

Jos Jonkers

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Pieterse

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Eline van der Burg

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Marieke van de Ven

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Rinske Drost

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Sjoerd Klarenbeek

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ute Boon

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge