Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ellen Wientjens is active.

Publication


Featured researches published by Ellen Wientjens.


Cell | 1991

Identification of cooperating oncogenes in Eμ-myc transgenic mice by provirus tagging

Maarten van Lohuizen; Sjef Verbeek; Blanca Scheljen; Ellen Wientjens; Hanneke van der Guidon; Anton Berns

Mo-MLV infection of E mu-myc transgenic mice results in a dramatic acceleration of pre-B cell lymphomagenesis. We have used provirus tagging to identify genes that cooperate with the E mu-myc transgene in B cell transformation. Here we report on the identification of four loci, pim-1, bmi-1, pal-1, and bla-1, which are occupied by proviruses in 35%, 35%, 28%, and 14% of the tumors, respectively. bmi-1, pal-1, and bla-1 represent novel common proviral insertion sites. The bmi-1 gene encodes a 324 amino acid protein with a predominantly nuclear localization. bmi-1 is highly conserved in evolution and contains several motifs frequently found in transcriptional regulators, including a new putative zinc finger motif. No genes have yet been assigned to pal-1 and bla-1. The distribution of proviruses over the four common insertion sites suggests that provirus tagging can be used not only to identify the cooperating oncogenes but also to assign these genes to distinct complementation groups in tumorigenesis.


Cell | 1997

CDK-Independent Activation of Estrogen Receptor by Cyclin D1

Renate Zwijsen; Ellen Wientjens; Rob Klompmaker; Jeroen van der Sman; René Bernards; Rob Michalides

Both cyclin D1 and estrogens have an essential role in regulating proliferation of breast epithelial cells. We show here a novel role for cyclin D1 in growth regulation of estrogen-responsive tissues by potentiating transcription of estrogen receptor-regulated genes. Cyclin D1 mediates this activation independent of complex formation to a CDK partner. Cyclin D1 activates estrogen receptor-mediated transcription in the absence of estrogen and enhances transcription in its presence. The activation of estrogen receptor by cyclin D1 is not inhibited by anti-estrogens. A direct physical binding of cyclin D1 to the hormone binding domain of the estrogen receptor results in an increased binding of the receptor to estrogen response element sequences, and upregulates estrogen receptor-mediated transcription. These results highlight a novel role for cyclin D1 as a CDK-independent activator of the estrogen receptor.


Nature Genetics | 2002

Genome-wide retroviral insertional tagging of genes involved in cancer in Cdkn2a-deficient mice

Anders H. Lund; Geoffrey Turner; Alla Trubetskoy; Els Verhoeven; Ellen Wientjens; Danielle Hulsman; Robert G. Russell; Ronald A. DePinho; Jack Lenz; Maarten van Lohuizen

We have used large-scale insertional mutagenesis to identify functional landmarks relevant to cancer in the recently completed mouse genome sequence. We infected Cdkn2a−/− mice with Moloney murine leukemia virus (MoMuLV) to screen for loci that can participate in tumorigenesis in collaboration with loss of the Cdkn2a-encoded tumor suppressors p16INK4a and p19ARF. Insertional mutagenesis by the latent retrovirus was synergistic with loss of Cdkn2a expression, as indicated by a marked acceleration in the development of both myeloid and lymphoid tumors. We isolated 747 unique sequences flanking retroviral integration sites and mapped them against the mouse genome sequence databases from Celera and Ensembl. In addition to 17 insertions targeting gene loci known to be cancer-related, we identified a total of 37 new common insertion sites (CISs), of which 8 encode components of signaling pathways that are involved in cancer. The effectiveness of large-scale insertional mutagenesis in a sensitized genetic background is demonstrated by the preference for activation of MAP kinase signaling, collaborating with Cdkn2a loss in generating the lymphoid and myeloid tumors. Collectively, our results show that large-scale retroviral insertional mutagenesis in genetically predisposed mice is useful both as a system for identifying genes underlying cancer and as a genetic framework for the assignment of such genes to specific oncogenic pathways.


Cancer Discovery | 2013

Loss of 53BP1 Causes PARP Inhibitor Resistance in Brca1-Mutated Mouse Mammary Tumors

Janneke E. Jaspers; Ariena Kersbergen; Ute Boon; Wendy Sol; Liesbeth van Deemter; Serge A.L. Zander; Rinske Drost; Ellen Wientjens; Jiuping Ji; Amal Aly; James H. Doroshow; Aaron Cranston; Niall Morrison Barr Martin; Alan Lau; Mark J. O'Connor; Shridar Ganesan; Piet Borst; Jos Jonkers; Sven Rottenberg

UNLABELLED Inhibition of PARP is a promising therapeutic strategy for homologous recombination-deficient tumors, such as BRCA1-associated cancers. We previously reported that BRCA1-deficient mouse mammary tumors may acquire resistance to the clinical PARP inhibitor (PARPi) olaparib through activation of the P-glycoprotein drug efflux transporter. Here, we show that tumor-specific genetic inactivation of P-glycoprotein increases the long-term response of BRCA1-deficient mouse mammary tumors to olaparib, but these tumors eventually developed PARPi resistance. In a fraction of cases, this resistance is caused by partial restoration of homologous recombination due to somatic loss of 53BP1. Importantly, PARPi resistance was minimized by long-term treatment with the novel PARP inhibitor AZD2461, which is a poor P-glycoprotein substrate. Together, our data suggest that restoration of homologous recombination is an important mechanism for PARPi resistance in BRCA1-deficient mammary tumors and that the risk of relapse of BRCA1-deficient tumors can be effectively minimized by using optimized PARP inhibitors. SIGNIFICANCE In this study, we show that loss of 53BP1 causes resistance to PARP inhibition in mouse mammary tumors that are deficient in BRCA1. We hypothesize that low expression or absence of 53BP1 also reduces the response of patients with BRCA1-deficient tumors to PARP inhibitors.


Molecular and Cellular Biology | 1998

Interaction of Mouse Polycomb-Group (Pc-G) Proteins Enx1 and Enx2 with Eed: Indication for Separate Pc-G Complexes

Maarten van Lohuizen; Marieke Tijms; Jan Willem Voncken; Armin Schumacher; Terry Magnuson; Ellen Wientjens

ABSTRACT The Polycomb group (Pc-G) constitutes an important, functionally conserved group of proteins, required to stably maintain inactive homeobox genes repressed during development. Drosophila extra sex combs (esc) and its mammalian homolog embryonic ectoderm development (eed) are special Pc-G members, in that they are required early during development when Pc-G repression is initiated, a process that is still poorly understood. To get insight in the molecular function of Eed, we searched for Eed-interacting proteins, using the yeast two-hybrid method. Here we describe the specific in vivo binding of Eed to Enx1 and Enx2, two mammalian homologs of the essential DrosophilaPc-G gene Enhancer-of-zeste[E(z)]. No direct biochemical interactions were found between Eed/Enx and a previously characterized mouse Pc-G protein complex, containing several mouse Pc-G proteins includingmouse polyhomeotic (Mph1). This suggests that different Pc-G complexes with distinct functions may exist. However, partial colocalization of Enx1 and Mph1 to subnuclear domains may point to more transient interactions between these complexes, in support of a bridging role for Enx1.


Cancer Cell | 2011

BRCA1 RING function is essential for tumor suppression but dispensable for therapy resistance.

Rinske Drost; Peter Bouwman; Sven Rottenberg; Ute Boon; Eva Schut; Sjoerd Klarenbeek; Christiaan Klijn; Ingrid van der Heijden; Hanneke van der Gulden; Ellen Wientjens; Mark Pieterse; Aurélie Catteau; Peter M. Green; Ellen Solomon; Joanna R. Morris; Jos Jonkers

Hereditary breast cancers are frequently caused by germline BRCA1 mutations. The BRCA1(C61G) mutation in the BRCA1 RING domain is a common pathogenic missense variant, which reduces BRCA1/BARD1 heterodimerization and abrogates its ubiquitin ligase activity. To investigate the role of BRCA1 RING function in tumor suppression and therapy response, we introduced the Brca1(C61G) mutation in a conditional mouse model for BRCA1-associated breast cancer. In contrast to BRCA1-deficient mammary carcinomas, tumors carrying the Brca1(C61G) mutation responded poorly to platinum drugs and PARP inhibition and rapidly developed resistance while retaining the Brca1(C61G) mutation. These findings point to hypomorphic activity of the BRCA1-C61G protein that, although unable to prevent tumor development, affects response to therapy.


Molecular and Cellular Biology | 1996

CYCLIN D1 TRIGGERS AUTONOMOUS GROWTH OF BREAST CANCER CELLS BY GOVERNING CELL CYCLE EXIT

R. M. L. Zwijsen; Rob Klompmaker; Ellen Wientjens; P. M. P. Kristel; B. Van Der Burg; Rob Michalides

Cyclin D1 controls G1-associated processes, including G0-to-G1 and G1-to-S transitions. This study demonstrates a novel aspect of cyclin D1 as a regulator of the transition between G1 and G0. Overexpression of cyclin D1 in MCF7 breast tumor cells resulted in a continued proliferation under low-serum conditions, whereas nonoverexpressing cells ceased to grow. This difference in growth was due to a reduced exit from G1 to G0 in cyclin D1-overexpressing cells. Our data therefore suggest a model in which cyclin D1 overexpression in tumor cells is responsible for hyperproliferation under growth factor-deprived conditions.


Cancer Discovery | 2013

A High-Throughput Functional Complementation Assay for Classification of BRCA1 Missense Variants

Peter Bouwman; Hanneke van der Gulden; Ingrid van der Heijden; Rinske Drost; Christiaan Klijn; Pramudita Prasetyanti; Mark Pieterse; Ellen Wientjens; Jost Seibler; Frans B. L. Hogervorst; Jos Jonkers

UNLABELLED Mutations in BRCA1 and BRCA2 account for the majority of hereditary breast and ovarian cancers, and therefore sequence analysis of both genes is routinely conducted in patients with early-onset breast cancer. Besides mutations that clearly abolish protein function or are known to increase cancer risk, a large number of sequence variants of uncertain significance (VUS) have been identified. Although several functional assays for BRCA1 VUSs have been described, thus far it has not been possible to conduct a high-throughput analysis in the context of the full-length protein. We have developed a relatively fast and easy cDNA-based functional assay to classify BRCA1 VUSs based on their ability to functionally complement BRCA1-deficient mouse embryonic stem cells. Using this assay, we have analyzed 74 unclassified BRCA1 missense mutants for which all predicted pathogenic variants are confined to the BRCA1 RING and BRCT domains. SIGNIFICANCE BRCA1 VUSs are frequently found in patients with hereditary breast or ovarian cancer and present a serious problem for clinical geneticists. This article describes the generation, validation, and application of a reliable high-throughput assay for the functional classification of BRCA1 sequence variants of uncertain significance.


Journal of Clinical Investigation | 2016

BRCA1185delAG tumors may acquire therapy resistance through expression of RING-less BRCA1

Rinske Drost; Kiranjit K. Dhillon; Hanneke van der Gulden; Ingrid van der Heijden; Inger Brandsma; Cristina Cruz; Dafni Chondronasiou; Marta Castroviejo-Bermejo; Ute Boon; Eva Schut; Eline van der Burg; Ellen Wientjens; Mark Pieterse; Christiaan Klijn; Sjoerd Klarenbeek; Fabricio Loayza-Puch; Ran Elkon; Liesbeth van Deemter; Sven Rottenberg; Marieke van de Ven; Dick H. W. Dekkers; Jeroen Demmers; Dik C. van Gent; Reuven Agami; Judith Balmaña; Violeta Serra; Toshiyasu Taniguchi; Peter Bouwman; Jos Jonkers

Heterozygous germline mutations in breast cancer 1 (BRCA1) strongly predispose women to breast cancer. BRCA1 plays an important role in DNA double-strand break (DSB) repair via homologous recombination (HR), which is important for tumor suppression. Although BRCA1-deficient cells are highly sensitive to treatment with DSB-inducing agents through their HR deficiency (HRD), BRCA1-associated tumors display heterogeneous responses to platinum drugs and poly(ADP-ribose) polymerase (PARP) inhibitors in clinical trials. It is unclear whether all pathogenic BRCA1 mutations have similar effects on the response to therapy. Here, we have investigated mammary tumorigenesis and therapy sensitivity in mice carrying the Brca1185stop and Brca15382stop alleles, which respectively mimic the 2 most common BRCA1 founder mutations, BRCA1185delAG and BRCA15382insC. Both the Brca1185stop and Brca15382stop mutations predisposed animals to mammary tumors, but Brca1185stop tumors responded markedly worse to HRD-targeted therapy than did Brca15382stop tumors. Mice expressing Brca1185stop mutations also developed therapy resistance more rapidly than did mice expressing Brca15382stop. We determined that both murine Brca1185stop tumors and human BRCA1185delAG breast cancer cells expressed a really interesting new gene domain-less (RING-less) BRCA1 protein that mediated resistance to HRD-targeted therapies. Together, these results suggest that expression of RING-less BRCA1 may serve as a marker to predict poor response to DSB-inducing therapy in human cancer patients.


Stem Cells | 2013

Polycomb group gene Ezh2 regulates mammary gland morphogenesis and maintains the luminal progenitor pool

Ewa M. Michalak; Karim Nacerddine; Alexandra M Pietersen; Vincent Beuger; Inka Pawlitzky; Paulien Cornelissen-Steijger; Ellen Wientjens; Ellen Tanger; Jost Seibler; Maarten van Lohuizen; Jos Jonkers

Specification of the cellular hierarchy in the mammary gland involves complex signaling that remains poorly defined. Polycomb group proteins are known to contribute to the maintenance of stem cell identity through epigenetic modifications, leading to stable alterations in gene expression. The polycomb protein family member EZH2 is known to be important for stem cell maintenance in multiple tissues, but its role in mammary gland development and differentiation remains unknown. Our analyses show that EZH2 is predominantly expressed in luminal cells of the mouse mammary epithelium. As mammary gland development occurs mostly after birth, the analysis of EZH2 gene function in postnatal development is precluded by embryonic lethality of conventional EZH2 knockout mice. To investigate the role of EZH2 in normal mammary gland epithelium, we have generated novel transgenic mice that express doxycycline‐regulatable short hairpin (sh) RNAs directed against Ezh2. Knockdown of EZH2 results in delayed outgrowth of the mammary epithelium during puberty, due to impaired terminal end bud formation and ductal elongation. Furthermore, our results demonstrate that EZH2 is required to maintain the luminal cell pool and may limit differentiation of luminal progenitors into CD61+ differentiated luminal cells, suggesting a role for EZH2 in mammary luminal cell fate determination. Consistent with this, EZH2 knockdown reduced lobuloalveolar expansion during pregnancy, suggesting EZH2 is required for the differentiation of luminal progenitors to alveolar cells.Stem Cells 2013;31:1910‐1920

Collaboration


Dive into the Ellen Wientjens's collaboration.

Top Co-Authors

Avatar

Jos Jonkers

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Eva Schut

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Maarten van Lohuizen

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Sjoerd Klarenbeek

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Anton Berns

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Rob Michalides

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Rinske Drost

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Pieterse

Netherlands Cancer Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge