Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rinske Drost is active.

Publication


Featured researches published by Rinske Drost.


Clinical Cancer Research | 2008

Selective Inhibition of BRCA2-Deficient Mammary Tumor Cell Growth by AZD2281 and Cisplatin

Bastiaan Evers; Rinske Drost; Eva Schut; Michiel de Bruin; Eline van der Burg; Patrick W. B. Derksen; Henne Holstege; Xiaoling Liu; Ellen van Drunen; H. Berna Beverloo; Graeme Cameron Murray Smith; Niall Morrison Barr Martin; Alan Lau; Mark J. O'Connor; Jos Jonkers

Purpose: To assess efficacy of the novel, selective poly(ADP-ribose) polymerase-1 (PARP-1) inhibitor AZD2281 against newly established BRCA2-deficient mouse mammary tumor cell lines and to determine potential synergy between AZD2281 and cisplatin. Experimental Design: We established and thoroughly characterized a panel of clonal cell lines from independent BRCA2-deficient mouse mammary tumors and BRCA2-proficient control tumors. Subsequently, we assessed sensitivity of these lines to conventional cytotoxic drugs and the novel PARP inhibitor AZD2281. Finally, in vitro combination studies were done to investigate interaction between AZD2281 and cisplatin. Results: Genetic, transcriptional, and functional analyses confirmed the successful isolation of BRCA2-deficient and BRCA2-proficient mouse mammary tumor cell lines. Treatment of these cell lines with 11 different anticancer drugs or with γ-irradiation showed that AZD2281, a novel and specific PARP inhibitor, caused the strongest differential growth inhibition of BRCA2-deficient versus BRCA2-proficient mammary tumor cells. Finally, drug combination studies showed synergistic cytotoxicity of AZD2281 and cisplatin against BRCA2-deficient cells but not against BRCA2-proficient control cells. Conclusion: We have successfully established the first set of BRCA2-deficient mammary tumor cell lines, which form an important addition to the existing preclinical models for BRCA-mutated breast cancer. The exquisite sensitivity of these cells to the PARP inhibitor AZD2281, alone or in combination with cisplatin, provides strong support for AZD2281 as a novel targeted therapeutic against BRCA-deficient cancers.


Cancer Discovery | 2013

Loss of 53BP1 Causes PARP Inhibitor Resistance in Brca1-Mutated Mouse Mammary Tumors

Janneke E. Jaspers; Ariena Kersbergen; Ute Boon; Wendy Sol; Liesbeth van Deemter; Serge A.L. Zander; Rinske Drost; Ellen Wientjens; Jiuping Ji; Amal Aly; James H. Doroshow; Aaron Cranston; Niall Morrison Barr Martin; Alan Lau; Mark J. O'Connor; Shridar Ganesan; Piet Borst; Jos Jonkers; Sven Rottenberg

UNLABELLED Inhibition of PARP is a promising therapeutic strategy for homologous recombination-deficient tumors, such as BRCA1-associated cancers. We previously reported that BRCA1-deficient mouse mammary tumors may acquire resistance to the clinical PARP inhibitor (PARPi) olaparib through activation of the P-glycoprotein drug efflux transporter. Here, we show that tumor-specific genetic inactivation of P-glycoprotein increases the long-term response of BRCA1-deficient mouse mammary tumors to olaparib, but these tumors eventually developed PARPi resistance. In a fraction of cases, this resistance is caused by partial restoration of homologous recombination due to somatic loss of 53BP1. Importantly, PARPi resistance was minimized by long-term treatment with the novel PARP inhibitor AZD2461, which is a poor P-glycoprotein substrate. Together, our data suggest that restoration of homologous recombination is an important mechanism for PARPi resistance in BRCA1-deficient mammary tumors and that the risk of relapse of BRCA1-deficient tumors can be effectively minimized by using optimized PARP inhibitors. SIGNIFICANCE In this study, we show that loss of 53BP1 causes resistance to PARP inhibition in mouse mammary tumors that are deficient in BRCA1. We hypothesize that low expression or absence of 53BP1 also reduces the response of patients with BRCA1-deficient tumors to PARP inhibitors.


Cancer Cell | 2011

BRCA1 RING function is essential for tumor suppression but dispensable for therapy resistance.

Rinske Drost; Peter Bouwman; Sven Rottenberg; Ute Boon; Eva Schut; Sjoerd Klarenbeek; Christiaan Klijn; Ingrid van der Heijden; Hanneke van der Gulden; Ellen Wientjens; Mark Pieterse; Aurélie Catteau; Peter M. Green; Ellen Solomon; Joanna R. Morris; Jos Jonkers

Hereditary breast cancers are frequently caused by germline BRCA1 mutations. The BRCA1(C61G) mutation in the BRCA1 RING domain is a common pathogenic missense variant, which reduces BRCA1/BARD1 heterodimerization and abrogates its ubiquitin ligase activity. To investigate the role of BRCA1 RING function in tumor suppression and therapy response, we introduced the Brca1(C61G) mutation in a conditional mouse model for BRCA1-associated breast cancer. In contrast to BRCA1-deficient mammary carcinomas, tumors carrying the Brca1(C61G) mutation responded poorly to platinum drugs and PARP inhibition and rapidly developed resistance while retaining the Brca1(C61G) mutation. These findings point to hypomorphic activity of the BRCA1-C61G protein that, although unable to prevent tumor development, affects response to therapy.


Breast Cancer Research | 2009

BRCA1-deficient mammary tumor cells are dependent on EZH2 expression and sensitive to Polycomb Repressive Complex 2-inhibitor 3-deazaneplanocin A

Julian Puppe; Rinske Drost; Xiaoling Liu; Simon A. Joosse; Bastiaan Evers; Paulien Cornelissen-Steijger; Petra M. Nederlof; Qiang Yu; Jos Jonkers; Maarten van Lohuizen; Alexandra M Pietersen

IntroductionTreatment of breast cancer is becoming more individualized with the recognition of tumor subgroups that respond differently to available therapies. Breast cancer 1 gene (BRCA1)-deficient tumors are usually of the basal subtype and associated with poor survival rates, highlighting the need for more effective therapy.MethodsWe investigated a mouse model that closely mimics breast cancer arising in BRCA1-mutation carriers to better understand the molecular mechanism of tumor progression and tested whether targeting of the Polycomb-group protein EZH2 would be a putative therapy for BRCA1-deficient tumors.ResultsGene expression analysis demonstrated that EZH2 is overexpressed in BRCA1-deficient mouse mammary tumors. By immunohistochemistry we show that an increase in EZH2 protein levels is also evident in tumors from BRCA1-mutation carriers. EZH2 is responsible for repression of genes driving differentiation and could thus be involved in the undifferentiated phenotype of these tumors. Importantly, we show that BRCA1-deficient cancer cells are selectively dependent on their elevated EZH2 levels. In addition, a chemical inhibitor of EZH2, 3-deazaneplanocin A (DZNep), is about 20-fold more effective in killing BRCA1-deficient cells compared to BRCA1-proficient mammary tumor cells.ConclusionsWe demonstrate by specific knock-down experiments that EZH2 overexpression is functionally relevant in BRCA1-deficient breast cancer cells. The effectiveness of a small molecule inhibitor indicates that EZH2 is a druggable target. The overexpression of EZH2 in all basal-like breast cancers warrants further investigation of the potential for targeting the genetic make-up of this particular breast cancer type.


Cancer Discovery | 2013

A High-Throughput Functional Complementation Assay for Classification of BRCA1 Missense Variants

Peter Bouwman; Hanneke van der Gulden; Ingrid van der Heijden; Rinske Drost; Christiaan Klijn; Pramudita Prasetyanti; Mark Pieterse; Ellen Wientjens; Jost Seibler; Frans B. L. Hogervorst; Jos Jonkers

UNLABELLED Mutations in BRCA1 and BRCA2 account for the majority of hereditary breast and ovarian cancers, and therefore sequence analysis of both genes is routinely conducted in patients with early-onset breast cancer. Besides mutations that clearly abolish protein function or are known to increase cancer risk, a large number of sequence variants of uncertain significance (VUS) have been identified. Although several functional assays for BRCA1 VUSs have been described, thus far it has not been possible to conduct a high-throughput analysis in the context of the full-length protein. We have developed a relatively fast and easy cDNA-based functional assay to classify BRCA1 VUSs based on their ability to functionally complement BRCA1-deficient mouse embryonic stem cells. Using this assay, we have analyzed 74 unclassified BRCA1 missense mutants for which all predicted pathogenic variants are confined to the BRCA1 RING and BRCT domains. SIGNIFICANCE BRCA1 VUSs are frequently found in patients with hereditary breast or ovarian cancer and present a serious problem for clinical geneticists. This article describes the generation, validation, and application of a reliable high-throughput assay for the functional classification of BRCA1 sequence variants of uncertain significance.


Journal of Clinical Investigation | 2016

BRCA1185delAG tumors may acquire therapy resistance through expression of RING-less BRCA1

Rinske Drost; Kiranjit K. Dhillon; Hanneke van der Gulden; Ingrid van der Heijden; Inger Brandsma; Cristina Cruz; Dafni Chondronasiou; Marta Castroviejo-Bermejo; Ute Boon; Eva Schut; Eline van der Burg; Ellen Wientjens; Mark Pieterse; Christiaan Klijn; Sjoerd Klarenbeek; Fabricio Loayza-Puch; Ran Elkon; Liesbeth van Deemter; Sven Rottenberg; Marieke van de Ven; Dick H. W. Dekkers; Jeroen Demmers; Dik C. van Gent; Reuven Agami; Judith Balmaña; Violeta Serra; Toshiyasu Taniguchi; Peter Bouwman; Jos Jonkers

Heterozygous germline mutations in breast cancer 1 (BRCA1) strongly predispose women to breast cancer. BRCA1 plays an important role in DNA double-strand break (DSB) repair via homologous recombination (HR), which is important for tumor suppression. Although BRCA1-deficient cells are highly sensitive to treatment with DSB-inducing agents through their HR deficiency (HRD), BRCA1-associated tumors display heterogeneous responses to platinum drugs and poly(ADP-ribose) polymerase (PARP) inhibitors in clinical trials. It is unclear whether all pathogenic BRCA1 mutations have similar effects on the response to therapy. Here, we have investigated mammary tumorigenesis and therapy sensitivity in mice carrying the Brca1185stop and Brca15382stop alleles, which respectively mimic the 2 most common BRCA1 founder mutations, BRCA1185delAG and BRCA15382insC. Both the Brca1185stop and Brca15382stop mutations predisposed animals to mammary tumors, but Brca1185stop tumors responded markedly worse to HRD-targeted therapy than did Brca15382stop tumors. Mice expressing Brca1185stop mutations also developed therapy resistance more rapidly than did mice expressing Brca15382stop. We determined that both murine Brca1185stop tumors and human BRCA1185delAG breast cancer cells expressed a really interesting new gene domain-less (RING-less) BRCA1 protein that mediated resistance to HRD-targeted therapies. Together, these results suggest that expression of RING-less BRCA1 may serve as a marker to predict poor response to DSB-inducing therapy in human cancer patients.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Palb2 synergizes with Trp53 to suppress mammary tumor formation in a model of inherited breast cancer

Christian Bowman-Colin; Bing Xia; Samuel F. Bunting; Christiaan Klijn; Rinske Drost; Peter Bouwman; Laura Fineman; Xixi Chen; Aedín C. Culhane; Hong Cai; Scott J. Rodig; Roderick T. Bronson; Jos Jonkers; André Nussenzweig; Chryssa Kanellopoulou; David M. Livingston

Germ-line mutations in PALB2 lead to a familial predisposition to breast and pancreatic cancer or to Fanconi Anemia subtype N. PALB2 performs its tumor suppressor role, at least in part, by supporting homologous recombination-type double strand break repair (HR-DSBR) through physical interactions with BRCA1, BRCA2, and RAD51. To further understand the mechanisms underlying PALB2-mediated DNA repair and tumor suppression functions, we targeted Palb2 in the mouse. Palb2-deficient murine ES cells recapitulated DNA damage defects caused by PALB2 depletion in human cells, and germ-line deletion of Palb2 led to early embryonic lethality. Somatic deletion of Palb2 driven by K14-Cre led to mammary tumor formation with long latency. Codeletion of both Palb2 and Tumor protein 53 (Trp53) accelerated mammary tumor formation. Like BRCA1 and BRCA2 mutant breast cancers, these tumors were defective in RAD51 focus formation, reflecting a defect in Palb2 HR-DSBR function, a strongly suspected contributor to Brca1, Brca2, and Palb2 mammary tumor development. However, unlike the case of Brca1-mutant cells, Trp53bp1 deletion failed to rescue the genomic instability of Palb2- or Brca2-mutant primary lymphocytes. Therefore, Palb2-driven DNA damage control is, in part, distinct from that executed by Brca1 and more similar to that of Brca2. The mechanisms underlying Palb2 mammary tumor suppression functions can now be explored genetically in vivo.


The Journal of Pathology | 2011

Loss of p53 partially rescues embryonic development of Palb2 knockout mice but does not foster haploinsufficiency of Palb2 in tumour suppression

Peter Bouwman; Rinske Drost; Christiaan Klijn; Mark Pieterse; Hanneke van der Gulden; Ji-Ying Song; Karoly Szuhai; Jos Jonkers

PALB2 interacts with BRCA1 and BRCA2 in supercomplexes involved in DNA repair via homologous recombination. Heterozygous germline mutations in PALB2 confer a moderate risk of breast cancer, while biallelic PALB2 mutations are linked to a severe form of Fanconi anaemia characterized by early childhood solid tumours and severe chromosomal instability. In contrast to BRCA1‐ or BRCA2‐associated cancers, breast tumours in heterozygous PALB2 mutation carriers do not show loss of the wild‐type allele, suggesting PALB2 might be haploinsufficient for tumour suppression. To study the role of PALB2 in development and tumourigenesis, we have generated Palb2GT mouse mutants using a gene trap approach. Whereas Palb2GT/GT homozygous mutant embryos died at mid‐gestation due to massive apoptosis, Palb2GT/+ heterozygous mice were viable and did not show any obvious abnormalities. Deletion of p53 alleviated the phenotype of Palb2GT/GT embryos, but did not rescue embryonic lethality. In addition, loss of p53 did not significantly collaborate with Palb2 heterozygosity in tumourigenesis in heterozygous or homozygous p53 knockout mice. Tumours arising in Palb2GT/+;p53+/− or Palb2GT/+;p53−/− compound mutant mice retained the wild‐type Palb2 allele and did not display increased genomic instability. Copyright


Clinical Cancer Research | 2017

Selected alkylating agents can overcome drug tolerance of G0-like tumor cells and eradicate BRCA1-deficient mammary tumors in mice.

Marina Pajic; Sohvi Blatter; Charlotte Guyader; Maaike Gonggrijp; Ariena Kersbergen; Aslı Küçükosmanoğlu; Wendy Sol; Rinske Drost; Jos Jonkers; Piet Borst; Sven Rottenberg

Purpose: We aimed to characterize and target drug-tolerant BRCA1-deficient tumor cells that cause residual disease and subsequent tumor relapse. Experimental Design: We studied responses to various mono- and bifunctional alkylating agents in a genetically engineered mouse model for BRCA1/p53-mutant breast cancer. Because of the large intragenic deletion of the Brca1 gene, no restoration of BRCA1 function is possible, and therefore, no BRCA1-dependent acquired resistance occurs. To characterize the cell-cycle stage from which Brca1−/−;p53−/− mammary tumors arise after cisplatin treatment, we introduced the fluorescent ubiquitination-based cell-cycle indicator (FUCCI) construct into the tumor cells. Results: Despite repeated sensitivity to the MTD of platinum drugs, the Brca1-mutated mammary tumors are not eradicated, not even by a frequent dosing schedule. We show that relapse comes from single-nucleated cells delaying entry into the S-phase. Such slowly cycling cells, which are present within the drug-naïve tumors, are enriched in tumor remnants. Using the FUCCI construct, we identified nonfluorescent G0-like cells as the population most tolerant to platinum drugs. Intriguingly, these cells are more sensitive to the DNA-crosslinking agent nimustine, resulting in an increased number of multinucleated cells that lack clonogenicity. This is consistent with our in vivo finding that the nimustine MTD, among several alkylating agents, is the most effective in eradicating Brca1-mutated mouse mammary tumors. Conclusions: Our data show that targeting G0-like cells is crucial for the eradication of BRCA1/p53–deficient tumor cells. This can be achieved with selected alkylating agents such as nimustine. Clin Cancer Res; 23(22); 7020–33. ©2017 AACR.


The European health psychologist | 2016

Use of economic evaluations by health psychologists and the relevance of their work for policy-making

K.L. Cheung; H. de Vries; Nadine Berndt; S.M.A.A. Evers; P. Barrio; Rinske Drost; M. de Bruin

Collaboration


Dive into the Rinske Drost's collaboration.

Top Co-Authors

Avatar

Jos Jonkers

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Peter Bouwman

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Ellen Wientjens

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Pieterse

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Bastiaan Evers

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Eva Schut

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ute Boon

Netherlands Cancer Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge