Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric Scheuer is active.

Publication


Featured researches published by Eric Scheuer.


Journal of Geophysical Research | 2003

Chemical composition of Asian continental outflow over the western Pacific: Results from Transport and Chemical Evolution over the Pacific (TRACE‐P)

Rachel S. Russo; Robert W. Talbot; Jack E. Dibb; Eric Scheuer; Garry Seid; C. E. Jordan; Henry E. Fuelberg; G. W. Sachse; M. Avery; S. A. Vay; D. R. Blake; Nicola J. Blake; Elliot Atlas; Alan Fried; S. T. Sandholm; David Tan; Hanwant B. Singh; Julie A. Snow; B J Heikes

[1] We characterize the chemical composition of Asian continental outflow observed during the NASATransport and Chemical Evolution over the Pacific (TRACE-P) mission during February–April 2001 in the western Pacific using data collected on the NASA DC-8 aircraft. A significant anthropogenic impact was present in the free troposphere and as far east as 150E longitude reflecting rapid uplift and transport of continental emissions. Five-day backward trajectories were utilized to identify five principal Asian source regions of outflow: central, coastal, north-northwest (NNW), southeast (SE), and west-southwest (WSW). The maximum mixing ratios for several species, such as CO, C2Cl4 ,C H3Cl, and hydrocarbons, were more than a factor of 2 larger in the boundary layer of the central and coastal regions due to industrial activity in East Asia. CO was well correlated with C2H2 ,C 2H6 ,C 2Cl4, and CH3Cl at low altitudes in these two regions (r 2 0.77–0.97). The NNW, WSW, and SE regions were impacted by anthropogenic sources above the boundary layer presumably due to the longer transport distances of air masses to the western Pacific. Frontal and convective lifting of continental emissions was most likely responsible for the high altitude outflow in these three regions. Photochemical processing was influential in each source region resulting in enhanced mixing ratios of O3, PAN, HNO3 ,H 2O2, and CH3OOH. The air masses encountered in all five regions were composed of a complex mixture of photochemically aged air with more recent emissions mixed into the outflow as indicated by enhanced hydrocarbon ratios (C2H2/CO 3 and C3H8/C2H6 0.2). Combustion, industrial activities, and the burning of biofuels and biomass all contributed to the chemical composition of air masses from each source region as demonstrated by the use of C2H2 ,C 2Cl4, and CH3Cl as atmospheric tracers. Mixing ratios of O3, CO, C2H2 ,C 2H6 ,S O2, and C2Cl4 were compared for the TRACE-P and PEM-West B missions. In the more northern regions, O3, CO, and SO2 were higher at low altitudes during TRACE-P. In general, mixing ratios were fairly similar between the two missions in the southern regions. A comparison between CO/CO2, CO/CH4 ,C 2H6/ C3H8 ,N Ox/SO2, and NOy/(SO2 + nss-SO4) ratios for the five source regions and for the 2000 Asian emissions summary showed very close agreement indicating that Asian emissions were well represented by the TRACE-P data and the emissions inventory. INDEX TERMS: 0365 Atmospheric Composition and Structure: Troposphere—composition and chemistry; 0368 Atmospheric Composition and Structure: Troposphere—constituent transport and chemistry; 0345 Atmospheric Composition and Structure: Pollution—urban and regional (0305)


Journal of Geophysical Research | 2003

Seasonal distributions of fine aerosol sulfate in the North American Arctic basin during TOPSE

Eric Scheuer; Robert W. Talbot; Jack E. Dibb; Garry Seid; Linsey J. DeBell; Barry Lefer

We used the mist chamber/ion chromatography technique to quantify fine aerosol SO = 4 (<2.7 μm) in the Arctic during the Tropospheric Ozone Production about the Spring Equinox Experiment (TOPSE) with about 2.5 min time resolution. Our effective sample area ranged from 50° to 86°N and 53° to 100°W. The seasonal evolution of fine aerosol sulfate in the Arctic troposphere during TOPSE was consistent with the phenomenon of Arctic haze. Arctic haze has been attributed to pollution from sources in the Arctic and pollution transported meridionally along stable isentropes into the Arctic in geographically broad but vertically narrow bands. These layers became more prevalent at higher altitudes as the season progressed toward summer, and the relevant isentropes are not held so close to the surface. Mean fine particle SO 4 = mixing ratios during TOPSE in February below 1000 m were elevated (112 pptv) and highly variable (between 28 and 290 pptv) but were significantly lower at higher altitudes (about 40 pptv). As the season progressed, elevated mixing ratios and higher variability were observed at higher altitudes, up to 7 km. In May, mixing ratios at the lowest altitudes declined but still remained higher than in February at all altitudes. The high variability in our measurements likely reflects the vertical heterogeneity of the wintertime Arctic atmosphere as the airborne sampling platform passed in and out of these layers. It is presumed that mixing ratios and variability will continue to decline at all altitudes into the summer as wet deposition processes become important in removing aerosol SO = 4 from the troposphere.


Journal of Geophysical Research | 1997

Large‐scale distributions of tropospheric nitric, formic, and acetic acids over the western Pacific basin during wintertime

Robert W. Talbot; Jack E. Dibb; Barry Lefer; Eric Scheuer; J. D. Bradshaw; S. T. Sandholm; S. Smyth; D. R. Blake; N. J. Blake; G. W. Sachse; J. E. Collins; G. L. Gregory

We report here measurements of the acidic gases nitric (HNO3), formic (HCOOH), and acetic (CH3COOH) over the western Pacific basin during the February-March 1994 Pacific Exploratory Mission-West (PEM-West B). These data were obtained aboard the NASA DC-8 research aircraft as it flew missions in the altitude range of 0.3–12.5 km over equatorial regions near Guam and then further westward encompassing the entire Pacific Rim arc. Aged marine air over the equatorial Pacific generally exhibited mixing ratios of acidic gases <100 parts per trillion by volume (pptv). Near the Asian continent, discrete plumes encountered below 6 km altitude contained up to 8 parts per billion by volume (ppbv) HNO3 and 10 ppbv HCOOH and CH3COOH. Overall there was a general correlation between mixing ratios of acidic gases with those of CO, C2H2, and C2Cl4, indicative of emissions from combustion and industrial sources. The latitudinal distributions of HNO3 and CO showed that the largest mixing ratios were centered around 15°N, while HCOOH, CH3COOH, and C2Cl4 peaked at 25°N. The mixing ratios of HCOOH and CH3COOH were highly correlated (r2 = 0.87) below 6 km altitude, with a slope (0.89) characteristic of the nongrowing season at midlatitudes in the northern hemisphere. Above 6 km altitude, HCOOH and CH3COOH were marginally correlated (r2 = 0.50), and plumes well defined by CO, C2H2, and C2Cl4 were depleted in acidic gases, most likely due to scavenging during vertical transport of air masses through convective cloud systems over the Asian continent. In stratospheric air masses, HNO3 mixing ratios were several parts per billion by volume (ppbv), yielding relationships with O3 and N2O consistent with those previously reported for NOy.


Geophysical Research Letters | 2015

Evolution of brown carbon in wildfire plumes

Haviland Forrister; Jiumeng Liu; Eric Scheuer; Jack E. Dibb; Luke D. Ziemba; K. L. Thornhill; Bruce E. Anderson; Glenn S. Diskin; A. E. Perring; Joshua P. Schwarz; Pedro Campuzano-Jost; Douglas A. Day; Brett B. Palm; Jose L. Jimenez; Athanasios Nenes; Rodney J. Weber

Particulate brown carbon (BrC) in the atmosphere absorbs light at subvisible wavelengths and has poorly constrained but potentially large climate forcing impacts. BrC from biomass burning has virtually unknown lifecycle and atmospheric stability. Here, BrC emitted from intense wildfires was measured in plumes transported over 2 days from two main fires, during the 2013 NASA SEAC4RS mission. Concurrent measurements of organic aerosol (OA) and black carbon (BC) mass concentration, BC coating thickness, absorption Angstrom exponent, and OA oxidation state reveal that the initial BrC emitted from the fires was largely unstable. Using back trajectories to estimate the transport time indicates that BrC aerosol light absorption decayed in the plumes with a half-life of 9 to 15 h, measured over day and night. Although most BrC was lost within a day, possibly through chemical loss and/or evaporation, the remaining persistent fraction likely determines the background BrC levels most relevant for climate forcing.


Geophysical Research Letters | 2014

Brown carbon in the continental troposphere

Jiumeng Liu; Eric Scheuer; Jack E. Dibb; Luke D. Ziemba; K. L. Thornhill; Bruce E. Anderson; Armin Wisthaler; Tomas Mikoviny; J. Jai Devi; Michael H. Bergin; Rodney J. Weber

Little is known about the optical significance of light absorbing particulate organic compounds (i.e., brown carbon, BrC), including the importance relative to black carbon (BC) and influence on direct radiative forcing by aerosols. The vertical profile of BrC affects its radiative forcing, yet the distribution of BrC in the free troposphere is largely unknown. In this study, BrC absorption was directly measured in solvent extracts of particulate filters obtained from aircraft sampling over the continental USA. Excluding biomass burning plumes, BrC was observed throughout the tropospheric column (<13 km), and its prevalence increased relative to BC with increasing altitude, indicating contributions from secondary sources. Closure analysis showed good agreement between light absorption from BC plus BrC relative to measured total aerosol absorption. A radiative transfer model indicated that BrC absorption reduced top of atmosphere aerosol forcing by ~20%, suggesting that it is an important component of direct aerosol radiative forcing.


Geophysical Research Letters | 1999

Reactive nitrogen budget during the NASA SONEX Mission

Robert W. Talbot; Jack E. Dibb; Eric Scheuer; Yasuyuki Kondo; M. Koike; Hanwant B. Singh; L. Salas; Yasuo Fukui; J. O. Ballenthin; Roger F. Meads; T. M. Miller; D. E. Hunton; Albert A. Viggiano; D. R. Blake; Nicola J. Blake; Elliot Atlas; F. Flocke; Daniel J. Jacob; Lyatt Jaeglé

The SASS Ozone and Nitrogen Oxides Experiment (SONEX) over the North Atlantic during October/November 1997 offered an excellent opportunity to examine the budget of reactive nitrogen in the upper troposphere (8–12 km altitude). The median measured total reactive nitrogen (NOy) mixing ratio was 425 parts per trillion by volume (pptv). A data set merged to the HNO3 measurement time resolution was used to calculate NOy (NOy sum) by summing the reactive nitrogen species (a combination of measured plus modeled results) and comparing it to measured NOy (NOy meas.). Comparisons were done for tropospheric air (O3 100 ppbv) with both showing good agreement between NOy sum and NOy meas. (slope >0.9 and r² ≈ 0.9). The total reactive nitrogen budget in the upper troposphere over the North Atlantic appears to be dominated by a mixture of NOx (NO + NO2), HNO3, and PAN. In tropospheric air median values of NOx/NOy were ≈ 0.25, HNO3/NOy ≈ 0.35 and PAN/NOy ≈ 0.17. Particulate NO3− and alkyl nitrates together composed <10% of NOy, while model estimated HNO4 averaged 12%. For the air parcels sampled during SONEX, there does not appear to be a large reservoir of unidentified NOy compounds.


Journal of Geophysical Research | 1997

Distributions of beryllium 7 and lead 2109, and soluble aerosol‐associated ionic species over the western Pacific: PEM West B, February‐March 1994

Jack E. Dibb; Robert W. Talbot; Barry Lefer; Eric Scheuer; G. L. Gregory; Edward V. Browell; J. D. Bradshaw; S. T. Sandholm; H. B. Singh

Aerosol sampling for the determination of the concentrations of soluble ionic species and the natural radionuclides 7Be and 210Pb was conducted from the NASA DC-8 over the western Pacific as part of GTE/PEM-West B during February-March 1994. Concentrations of most soluble ionic species in the free troposphere were higher in samples collected on flights originating from Hong Kong and Japan than those collected further east over the open ocean. In both regions the measured concentrations were higher than those found during PEM-West A (fall 1991). Activities of 210Pb, a tracer of air masses influenced by sources on the Asian continent, showed the same patterns. These data indicate the effect of stronger continental outflow from Asia over the western Pacific during the spring compared to fall season. For readily scavenged aerosol-associated species and soluble acidic gases the strongest indications of Asian outflow were restricted to altitudes below 6 km. The distribution of the continental tracer 210Pb was also compared to those of a large number of gas phase species measured on the DC-8. Relatively strong correlations were found with O3 and peroxyacetylnitrate (PAN), but only during the flights over the remote Pacific. During PEM-West A, similar correlations were seen, but they were stronger near Asia. We believe that these correlations are a signature of continental air that has been processed by deep wet convection over land before being advected over the ocean. One flight over the Sea of Japan provided the opportunity to sample upper troposphere/lower stratosphere air in and around a tropopause fold. Concentrations of 7Be reached 7 pCi m−3 STP, and peak O3 mixing ratios of 480 ppb were encountered at 10.7 km. The 7Be data are used to estimate the fraction of stratospheric air mixed down into the troposphere by circulation in the fold.


Journal of Geophysical Research | 1999

Influence of biomass combustion emissions on the distribution of acidic trace gases over the southern Pacific basin during austral springtime

Robert W. Talbot; Jack E. Dibb; Eric Scheuer; D. R. Blake; N. J. Blake; G. L. Gregory; G. W. Sachse; J. D. Bradshaw; S. T. Sandholm; H. B. Singh

This paper describes the large-scale distributions of HNO3, HCOOH, and CH3COOH over the central and South Pacific basins during the Pacific Exploratory Mission-Tropics (PEM-Tropics) in austral springtime. Because of the remoteness of this region from continental areas, low part per trillion by volume (pptv) mixing ratios of acidic gases were anticipated to be pervasive over the South Pacific basin. However, at altitudes of 2–12 km over the South Pacific, air parcels were encountered frequently with significantly enhanced mixing ratios (up to 1200 pptv) of acidic gases. Most of these air parcels were centered in the 3–7 km altitude range and occurred within the 15°−65°S latitudinal band. The acidic gases exhibited an overall general correlation with CH3Cl, PAN, and O3, suggestive of photochemical and biomass burning sources. There was no correlation or trend of acidic gases with common industrial tracer compounds (e.g., C2Cl4 or CH3CCl3). The combustion emissions sampled over the South Pacific basin were relatively aged exhibiting C2H2/CO ratios in the range of 0.2–2.2 pptv/ppbv. The relationships between acidic gases and this ratio were similar to what was observed in aged air parcels (i.e., >3–5 days since they were over a continental area) over the western North Pacific during the Pacific Exploratory Mission-West Phases A and B (PEM-West A and B). In the South Pacific marine boundary layer a median C2H2/CO ratio of 0.6 suggested that this region was generally not influenced by direct inputs of biomass combustion emissions. Here we observed the lowest mixing ratios of acidic gases, with median values of 14 pptv for HNO3, 19 pptv for HCOOH, and 18 pptv for CH3COOH. These values were coincident with low mixing ratios of NOx(<10 pptv), CO (≈50 parts per billion by volume (ppbv)), O3 (< 20 ppbv), and long-lived hydrocarbons (e.g., C2H6 <300 pptv). Overall, the PEM-Tropics data suggest an important influence of aged biomass combustion emissions on the distributions of acidic gases over the South Pacific basin in austral springtime.


Journal of Geophysical Research | 1999

Aerosol chemical composition and distribution during the Pacific Exploratory Mission (PEM) Tropics

Jack E. Dibb; Robert W. Talbot; Eric Scheuer; D. R. Blake; N. J. Blake; G. L. Gregory; G. W. Sachse; Donald C. Thornton

Distributions of aerosol-associated soluble ions over much of the South Pacific were determined by sampling from the NASA DC-8 as part of the Pacific Exploratory Mission (PEM) Tropics campaign. The mixing ratios of all ionic species were surprisingly low throughout the free troposphere (2–12 km), despite the pervasive influence from biomass burning plumes advecting over the South Pacific from the west during PEM-Tropics. At the same time, the specific activity of 7Be frequently exceeded 1000 fCi m−3 through much of the depth of the troposphere. These distributions indicate that the plumes must have been efficiently scavenged by precipitation (removing the soluble ions), but that the scavenging must have occurred far upwind of the DC-8 sampling regions (otherwise 7Be activities would also have been low). This inference is supported by large enhancements of HNO3 and carboxylic acids in many of the plumes, as these soluble acidic gases would also be readily scavenged in any precipitation events. Decreasing mixing ratios of NH4+ with altitude in all South Pacific regions sampled provide support for recent suggestions that oceanic emissions of NH3 constitute a significant source far from continents. Our sampling below 2 km reaffirms the latitudinal pattern in the methylsulfonate/non-sea-salt sulfate (MSA/nss SO4=) molar ratio established through surface-based and shipboard sampling, with values increasing from <0.05 in the tropics to nearly 0.6 at 70°S. However, we also found very high values of this ratio (0.2–0.5) at 10 km altitude above the intertropical convergence zone near 10°N. It appears that wet convective pumping of dimethylsulfide from the tropical marine boundary layer is responsible for the high values of the MSA/nss SO4= ratio in the tropical upper troposphere. This finding complicates use of this ratio to infer the zonal origin of biogenic S transported long distances.


Journal of Geophysical Research | 2000

Tropospheric reactive odd nitrogen over the South Pacific in austral springtime

Robert W. Talbot; Jack E. Dibb; Eric Scheuer; J. Bradshaw; S. T. Sandholm; H. B. Singh; D. R. Blake; Nicola J. Blake; Elliot Atlas; F. Flocke

The distribution of reactive nitrogen species over the South Pacific during austral springtime appears to be dominated by biomass burning emissions and possibly lightning and stratospheric inputs. The absence of robust correlations of reactive nitrogen species with source-specific tracers (e.g., C2H2 [combustion], CH3Cl [biomass burning], C2Cl4 [industrial], 210Pb [continental], and 7Be [stratospheric]) suggests significant aging and processing of the sampled air parcels due to losses by surface deposition, OH attack, and dilution processes. Classification of the air parcels based on CO enhancements indicates that the greatest influence was found in plumes at 3–8 km altitude in the distributions of HNO3 and peroxyacetyl nitrate (PAN). Here mixing ratios of these species reached 600 parts per trillion by volume (pptv), values surprisingly large for a location several thousand kilometers removed from the nearest continental areas. The mixing ratio of total reactive nitrogen (the NOy sum), operationally defined in this paper as measured (NO + HNO3 + PAN + CH3ONO2 + C2H5ONO2) + modeled (NO2), had a median value of 285 pptv within these plumes compared with 120 pptv in nonplume air parcels. Particle NO−3 was not included in this analysis of the NOy sum due to its 10- to 15-min sampling time resolution, but, in general, it was <10% of the NOy sum. Comparison of the two air parcel classifications for NOy and alkyl nitrate distributions showed no perceivable plume influence, but recycling of reactive nitrogen may have masked this direct effect. In the marine boundary layer, the NOy sum averaged 50 pptv in both air parcel classifications, being somewhat isolated from the polluted conditions above it by the trade wind inversion. In this region, however, alkyl nitrates appear to have an important marine source where they comprise 20–80% of the NOy sum in equatorial and high-latitude regions over the South Pacific.

Collaboration


Dive into the Eric Scheuer's collaboration.

Top Co-Authors

Avatar

Jack E. Dibb

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. R. Blake

University of California

View shared research outputs
Top Co-Authors

Avatar

Garry Seid

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. E. Jordan

Langley Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge