Fabrizio d'Adda di Fagagna
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fabrizio d'Adda di Fagagna.
Nature Cell Biology | 2012
Marzia Fumagalli; Francesca Rossiello; Michela Clerici; Sara Barozzi; Davide Cittaro; Jessica Kaplunov; Gabriele Bucci; Miryana Dobreva; Valentina Matti; Christian M. Beauséjour; Utz Herbig; Maria Pia Longhese; Fabrizio d'Adda di Fagagna
The DNA-damage response (DDR) arrests cell-cycle progression until damage is removed. DNA-damage-induced cellular senescence is associated with persistent DDR. The molecular bases that distinguish transient from persistent DDR are unknown. Here we show that a large fraction of exogenously induced persistent DDR markers is associated with telomeric DNA in cultured cells and mammalian tissues. In yeast, a chromosomal DNA double-strand break next to a telomeric sequence resists repair and impairs DNA ligase 4 recruitment. In mammalian cells, ectopic localization of telomeric factor TRF2 next to a double-strand break induces persistent DNA damage and DDR. Linear, but not circular, telomeric DNA or scrambled DNA induces a prolonged checkpoint in normal cells. In terminally differentiated tissues of old primates, DDR markers accumulate at telomeres that are not critically short. We propose that linear genomes are not uniformly reparable and that telomeric DNA tracts, if damaged, are irreparable and trigger persistent DDR and cellular senescence.
Current Biology | 2001
Fabrizio d'Adda di Fagagna; M. Prakash Hande; Wei-Min Tong; David Roth; Peter M. Lansdorp; Zhao-Qi Wang
DNA repair by nonhomologous end-joining (NHEJ) relies on the Ku70:Ku80 heterodimer in species ranging from yeast to man. In Saccharomyces cerevisiae and Schizosaccharomyces pombe, Ku also controls telomere functions. Here, we show that Ku70, Ku80, and DNA-PKcs, with which Ku interacts, associate in vivo with telomeric DNA in several human cell types, and we show that these associations are not significantly affected by DNA-damaging agents. We also demonstrate that inactivation of Ku80 or Ku70 in the mouse yields telomeric shortening in various primary cell types at different developmental stages. By contrast, telomere length is not altered in cells impaired in XRCC4 or DNA ligase IV, two other NHEJ components. We also observe higher genomic instability in Ku-deficient cells than in XRCC4-null cells. This suggests that chromosomal instability of Ku-deficient cells results from a combination of compromised telomere stability and defective NHEJ.
Nature | 2012
Sofia Francia; Flavia Michelini; Alka Saxena; Dave Tang; Michiel J. L. de Hoon; Viviana Anelli; Marina Mione; Piero Carninci; Fabrizio d'Adda di Fagagna
Non-coding RNAs (ncRNAs) are involved in an increasingly recognized number of cellular events. Some ncRNAs are processed by DICER and DROSHA RNases to give rise to small double-stranded RNAs involved in RNA interference (RNAi). The DNA-damage response (DDR) is a signalling pathway that originates from a DNA lesion and arrests cell proliferation. So far, DICER and DROSHA RNA products have not been reported to control DDR activation. Here we show, in human, mouse and zebrafish, that DICER and DROSHA, but not downstream elements of the RNAi pathway, are necessary to activate the DDR upon exogenous DNA damage and oncogene-induced genotoxic stress, as studied by DDR foci formation and by checkpoint assays. DDR foci are sensitive to RNase A treatment, and DICER- and DROSHA-dependent RNA products are required to restore DDR foci in RNase-A-treated cells. Through RNA deep sequencing and the study of DDR activation at a single inducible DNA double-strand break, we demonstrate that DDR foci formation requires site-specific DICER- and DROSHA-dependent small RNAs, named DDRNAs, which act in a MRE11–RAD50–NBS1-complex-dependent manner (MRE11 also known as MRE11A; NBS1 also known as NBN). DDRNAs, either chemically synthesized or in vitro generated by DICER cleavage, are sufficient to restore the DDR in RNase-A-treated cells, also in the absence of other cellular RNAs. Our results describe an unanticipated direct role of a novel class of ncRNAs in the control of DDR activation at sites of DNA damage.
Nature Genetics | 1999
Fabrizio d'Adda di Fagagna; M. Prakash Hande; Wei-Min Tong; Peter M. Lansdorp; Zhao-Qi Wang
In most eukaryotes, poly(ADP-ribose) polymerase (PARP) recognizes DNA strand interruptions generated in vivo. DNA binding by PARP triggers primarily its own modification by the sequential addition of ADP-ribose units to form polymers; this modification, in turn, causes the release of PARP from DNA ends. Studies on the effects of the disruption of the gene encoding PARP (Adprt1, formerly Adprp) in mice have demonstrated roles for PARP in recovery from DNA damage and in suppressing recombination processes involving DNA ends. Telomeres are the natural termini of chromosomes and are, therefore, potential targets of PARP. Here, by the use of two different techniques, we show that mice lacking PARP display telomere shortening compared with wild-type mice. Telomere shortening is seen in different genetic backgrounds and in different tissues, both from embryos and adult mice. In vitro telomerase activity, however, is not altered in Adprt1–/– mouse fibroblasts. Furthermore, cytogenetic analysis of mouse embryonic fibroblasts reveals that lack of PARP is associated with severe chromosomal instability, characterized by increased frequencies of chromosome fusions and aneuploidy. The absence of PARP does not affect the presence of single-strand overhangs, naturally present at the ends of telomeres. This study therefore reveals an unanticipated role for PARP in telomere length regulation and provides insights into its functions in maintaining genomic integrity.
The EMBO Journal | 2012
Anitha Suram; Jessica Kaplunov; Priyanka L. Patel; Haihe Ruan; Aurora Cerutti; Virginia Boccardi; Marzia Fumagalli; Raffaella Di Micco; Neena Mirani; Resham Lal Gurung; Manoor Prakash Hande; Fabrizio d'Adda di Fagagna; Utz Herbig
In normal human somatic cells, telomere dysfunction causes cellular senescence, a stable proliferative arrest with tumour suppressing properties. Whether telomere dysfunction‐induced senescence (TDIS) suppresses cancer growth in humans, however, is unknown. Here, we demonstrate that multiple and distinct human cancer precursor lesions, but not corresponding malignant cancers, are comprised of cells that display hallmarks of TDIS. Furthermore, we demonstrate that oncogenic signalling, frequently associated with initiating cancer growth in humans, dramatically affected telomere structure and function by causing telomeric replication stress, rapid and stochastic telomere attrition, and consequently telomere dysfunction in cells that lack hTERT activity. DNA replication stress induced by drugs also resulted in telomere dysfunction and cellular senescence in normal human cells, demonstrating that telomeric repeats indeed are hypersensitive to DNA replication stress. Our data reveal that TDIS, accelerated by oncogene‐induced DNA replication stress, is a biological response of cells in human cancer precursor lesions and provide strong evidence that TDIS is a critical tumour suppressing mechanism in humans.
Nature Reviews Cancer | 2012
Gabriele Sulli; Raffaella Di Micco; Fabrizio d'Adda di Fagagna
The generation of DNA lesions and the resulting activation of DNA damage response (DDR) pathways are both affected by the chromatin status at the site of damaged DNA. In turn, DDR activation affects the chromatin at both the damaged site and across the whole genome. Cellular senescence and cancer are associated with the engagement of the DDR pathways and with profound chromatin changes. In this Opinion article, we discuss the interplay between chromatin and DDR factors in the context of cellular senescence that is induced by oncogenes and in cancer.
Molecular and Cellular Biology | 1999
Graeme Cameron Murray Smith; Fabrizio d'Adda di Fagagna; Nicholas David Lakin
ABSTRACT The activation of the cysteine proteases with aspartate specificity, termed caspases, is of fundamental importance for the execution of programmed cell death. These proteases are highly specific in their action and activate or inhibit a variety of key protein molecules in the cell. Here, we study the effect of apoptosis on the integrity of two proteins that have critical roles in DNA damage signalling, cell cycle checkpoint controls, and genome maintenance—the product of the gene defective in ataxia telangiectasia, ATM, and the related protein ATR. We find that ATM but not ATR is specifically cleaved in cells induced to undergo apoptosis by a variety of stimuli. We establish that ATM cleavage in vivo is dependent on caspases, reveal that ATM is an efficient substrate for caspase 3 but not caspase 6 in vitro, and show that the in vitro caspase 3 cleavage pattern mirrors that in cells undergoing apoptosis. Strikingly, apoptotic cleavage of ATM in vivo abrogates its protein kinase activity against p53 but has no apparent effect on the DNA binding properties of ATM. These data suggest that the cleavage of ATM during apoptosis generates a kinase-inactive protein that acts, through its DNA binding ability, in a trans-dominant-negative fashion to prevent DNA repair and DNA damage signalling.
Current Biology | 2005
Sabrina Giavara; Effie Kosmidou; M. Prakash Hande; Marco Bianchi; Alan Morgan; Fabrizio d'Adda di Fagagna
Saccharomyces cerevisiae Nhp6A and Nhp6B are chromatin architectural factors that belong to the high-mobility group box (HMGB) superfamily and appear to be functionally related to mammalian Hmgb1. They bind to the minor groove of double-stranded DNA in a non-sequence-specific manner and thereby influence chromatin structure. Previous work has implicated these proteins in a variety of nuclear processes, including chromatin remodeling, DNA replication, transcription, and recombination . Here, we show that Nhp6A/B loss leads to increased genomic instability, hypersensitivity to DNA-damaging agents, and shortened yeast cell life span that is associated with elevated levels of extrachromosomal rDNA circles. Furthermore, we show that hypersensitivity toward UV light does not appear to reflect a decreased capacity for DNA repair but instead correlates with higher levels of UV-induced thymine dimer adducts being formed in cells lacking Nhp6A/B. Likewise, we show that mouse fibroblasts lacking Hmgb1 display higher rates of damage after UV irradiation than wild-type controls and also exhibit pronounced chromosomal instability. Taken together, these data indicate that Nhp6A/B and Hmgb1 protect DNA from damaging agents and thus guard against the generation of genomic aberrations.
Trends in Cell Biology | 2014
Fabrizio d'Adda di Fagagna
Historically, the role of cellular RNA has been subordinate and ancillary to DNA. Protein-coding mRNA conveys the information content of DNA, and transfer RNAs and ribosomal RNAs allow the polymerization of amino acids into proteins. The discovery of non-protein-coding RNAs (ncRNAs) provided an additional role for RNA in finely tuning DNA expression. However, it has recently become apparent that the safeguard of DNA integrity depends on small ncRNAs acting at the site of DNA lesions to signal the presence of DNA damage in the cell, and on the genes involved in their biogenesis to achieve accurate DNA repair. I review here evidence supporting a role for small ncRNAs, termed DNA damage-response RNAs (DDRNAs) or double-strand break (DSB)-induced RNAs (diRNAs), that are generated at sites of DNA damage and control the DNA damage response (DDR). I also discuss their biogenesis, potential mechanisms of action, and their relevance in cancer.
Nature Cell Biology | 2009
Marzia Fumagalli; Fabrizio d'Adda di Fagagna
Senescent cells alter their microenvironment by secreting a growing collection of factors, a phenomenon termed the senescence-associated secretory phenotype (SASP). Cellular senescence is often the result of nuclear DNA damage fuelling a chronic DNA damage response (DDR). Upstream elements of the DDR cascade are necessary for full blown SASP, and additional crosstalk occurs between the DDR and cytokine secretion.