Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fred P. Davis is active.

Publication


Featured researches published by Fred P. Davis.


Nucleic Acids Research | 2004

MODBASE, a database of annotated comparative protein structure models, and associated resources

Ursula Pieper; Narayanan Eswar; Ben Webb; David Eramian; Libusha Kelly; David T. Barkan; Hannah Carter; Parminder Mankoo; Rachel Karchin; Marc A. Marti-Renom; Fred P. Davis; Andrej Sali

ModBase (http://salilab.org/modbase) is a database of annotated comparative protein structure models. The models are calculated by ModPipe, an automated modeling pipeline that relies primarily on Modeller for fold assignment, sequence-structure alignment, model building and model assessment (http://salilab.org/modeller/). ModBase currently contains almost 30 million reliable models for domains in 4.7 million unique protein sequences. ModBase allows users to compute or update comparative models on demand, through an interface to the ModWeb modeling server (http://salilab.org/modweb). ModBase models are also available through the Protein Model Portal (http://www.proteinmodelportal.org/). Recently developed associated resources include the AllosMod server for modeling ligand-induced protein dynamics (http://salilab.org/allosmod), the AllosMod-FoXS server for predicting a structural ensemble that fits an SAXS profile (http://salilab.org/allosmod-foxs), the FoXSDock server for protein–protein docking filtered by an SAXS profile (http://salilab.org/foxsdock), the SAXS Merge server for automatic merging of SAXS profiles (http://salilab.org/saxsmerge) and the Pose & Rank server for scoring protein–ligand complexes (http://salilab.org/poseandrank). In this update, we also highlight two applications of ModBase: a PSI:Biology initiative to maximize the structural coverage of the human alpha-helical transmembrane proteome and a determination of structural determinants of human immunodeficiency virus-1 protease specificity.


Neuron | 2015

Epigenomic Signatures of Neuronal Diversity in the Mammalian Brain

Alisa Mo; Eran A. Mukamel; Fred P. Davis; Chongyuan Luo; Gilbert L. Henry; Serge Picard; Mark A. Urich; Joseph R. Nery; Terrence J. Sejnowski; Ryan Lister; Sean R. Eddy; Joseph R. Ecker; Jeremy Nathans

Neuronal diversity is essential for mammalian brain function but poses a challenge to molecular profiling. To address the need for tools that facilitate cell-type-specific epigenomic studies, we developed the first affinity purification approach to isolate nuclei from genetically defined cell types in a mammal. We combine this technique with next-generation sequencing to show that three subtypes of neocortical neurons have highly distinctive epigenomic landscapes. Over 200,000 regions differ in chromatin accessibility and DNA methylation signatures characteristic of gene regulatory regions. By footprinting and motif analyses, these regions are predicted to bind distinct cohorts of neuron subtype-specific transcription factors. Neuronal epigenomes reflect both past and present gene expression, with DNA hyper-methylation at developmentally critical genes appearing as a novel epigenomic signature in mature neurons. Taken together, our findings link the functional and transcriptional complexity of neurons to their underlying epigenomic diversity.


Bioinformatics | 2005

PIBASE: a comprehensive database of structurally defined protein interfaces

Fred P. Davis; Andrej Sali

MOTIVATION In recent years, the Protein Data Bank (PDB) has experienced rapid growth. To maximize the utility of the high resolution protein-protein interaction data stored in the PDB, we have developed PIBASE, a comprehensive relational database of structurally defined interfaces between pairs of protein domains. It is composed of binary interfaces extracted from structures in the PDB and the Probable Quaternary Structure server using domain assignments from the Structural Classification of Proteins and CATH fold classification systems. RESULTS PIBASE currently contains 158,915 interacting domain pairs between 105,061 domains from 2125 SCOP families. A diverse set of geometric, physiochemical and topologic properties are calculated for each complex, its domains, interfaces and binding sites. A subset of the interface properties are used to remove interface redundancy within PDB entries, resulting in 20,912 distinct domain-domain interfaces. The complexes are grouped into 989 topological classes based on their patterns of domain-domain contacts. The binary interfaces and their corresponding binding sites are categorized into 18,755 and 30,975 topological classes, respectively, based on the topology of secondary structure elements. The utility of the database is illustrated by outlining several current applications. AVAILABILITY The database is accessible via the world wide web at http://salilab.org/pibase SUPPLEMENTARY INFORMATION http://salilab.org/pibase/suppinfo.html.


Protein Science | 2007

Host–pathogen protein interactions predicted by comparative modeling

Fred P. Davis; David T. Barkan; Narayanan Eswar; James H. McKerrow; Andrej Sali

Pathogens have evolved numerous strategies to infect their hosts, while hosts have evolved immune responses and other defenses to these foreign challenges. The vast majority of host–pathogen interactions involve protein–protein recognition, yet our current understanding of these interactions is limited. Here, we present and apply a computational whole‐genome protocol that generates testable predictions of host–pathogen protein interactions. The protocol first scans the host and pathogen genomes for proteins with similarity to known protein complexes, then assesses these putative interactions, using structure if available, and, finally, filters the remaining interactions using biological context, such as the stage‐specific expression of pathogen proteins and tissue expression of host proteins. The technique was applied to 10 pathogens, including species of Mycobacterium, apicomplexa, and kinetoplastida, responsible for “neglected” human diseases. The method was assessed by (1) comparison to a set of known host–pathogen interactions, (2) comparison to gene expression and essentiality data describing host and pathogen genes involved in infection, and (3) analysis of the functional properties of the human proteins predicted to interact with pathogen proteins, demonstrating an enrichment for functionally relevant host–pathogen interactions. We present several specific predictions that warrant experimental follow‐up, including interactions from previously characterized mechanisms, such as cytoadhesion and protease inhibition, as well as suspected interactions in hypothesized networks, such as apoptotic pathways. Our computational method provides a means to mine whole‐genome data and is complementary to experimental efforts in elucidating networks of host–pathogen protein interactions.


Nucleic Acids Research | 2012

Cell type–specific genomics of Drosophila neurons

Gilbert L. Henry; Fred P. Davis; Serge Picard; Sean R. Eddy

Many tools are available to analyse genomes but are often challenging to use in a cell type–specific context. We have developed a method similar to the isolation of nuclei tagged in a specific cell type (INTACT) technique [Deal,R.B. and Henikoff,S. (2010) A simple method for gene expression and chromatin profiling of individual cell types within a tissue. Dev. Cell, 18, 1030–1040; Steiner,F.A., Talbert,P.B., Kasinathan,S., Deal,R.B. and Henikoff,S. (2012) Cell-type-specific nuclei purification from whole animals for genome-wide expression and chromatin profiling. Genome Res., doi:10.1101/gr.131748.111], first developed in plants, for use in Drosophila neurons. We profile gene expression and histone modifications in Kenyon cells and octopaminergic neurons in the adult brain. In addition to recovering known gene expression differences, we also observe significant cell type–specific chromatin modifications. In particular, a small subset of differentially expressed genes exhibits a striking anti-correlation between repressive and activating histone modifications. These genes are enriched for transcription factors, recovering those known to regulate mushroom body identity and predicting analogous regulators of octopaminergic neurons. Our results suggest that applying INTACT to specific neuronal populations can illuminate the transcriptional regulatory networks that underlie neuronal cell identity.


eLife | 2016

Epigenomic landscapes of retinal rods and cones

Alisa Mo; Chongyuan Luo; Fred P. Davis; Eran A. Mukamel; Gilbert L. Henry; Joseph R. Nery; Mark A. Urich; Serge Picard; Ryan Lister; Sean R. Eddy; Michael Beer; Joseph R. Ecker; Jeremy Nathans

Rod and cone photoreceptors are highly similar in many respects but they have important functional and molecular differences. Here, we investigate genome-wide patterns of DNA methylation and chromatin accessibility in mouse rods and cones and correlate differences in these features with gene expression, histone marks, transcription factor binding, and DNA sequence motifs. Loss of NR2E3 in rods shifts their epigenomes to a more cone-like state. The data further reveal wide differences in DNA methylation between retinal photoreceptors and brain neurons. Surprisingly, we also find a substantial fraction of DNA hypo-methylated regions in adult rods that are not in active chromatin. Many of these regions exhibit hallmarks of regulatory regions that were active earlier in neuronal development, suggesting that these regions could remain undermethylated due to the highly compact chromatin in mature rods. This work defines the epigenomic landscapes of rods and cones, revealing features relevant to photoreceptor development and function. DOI: http://dx.doi.org/10.7554/eLife.11613.001


Nucleic Acids Research | 2006

Protein complex compositions predicted by structural similarity.

Fred P. Davis; Hannes Braberg; Min-yi Shen; Ursula Pieper; Andrej Sali; M.S. Madhusudhan

Proteins function through interactions with other molecules. Thus, the network of physical interactions among proteins is of great interest to both experimental and computational biologists. Here we present structure-based predictions of 3387 binary and 1234 higher order protein complexes in Saccharomyces cerevisiae involving 924 and 195 proteins, respectively. To generate candidate complexes, comparative models of individual proteins were built and combined together using complexes of known structure as templates. These candidate complexes were then assessed using a statistical potential, derived from binary domain interfaces in PIBASE (). The statistical potential discriminated a benchmark set of 100 interface structures from a set of sequence-randomized negative examples with a false positive rate of 3% and a true positive rate of 97%. Moreover, the predicted complexes were also filtered using functional annotation and sub-cellular localization data. The ability of the method to select the correct binding mode among alternates is demonstrated for three camelid VHH domain—porcine α–amylase interactions. We also highlight the prediction of co-complexed domain superfamilies that are not present in template complexes. Through integration with MODBASE, the application of the method to proteomes that are less well characterized than that of S.cerevisiae will contribute to expansion of the structural and functional coverage of protein interaction space. The predicted complexes are deposited in MODBASE ().


PLOS Computational Biology | 2010

The Overlap of Small Molecule and Protein Binding Sites within Families of Protein Structures

Fred P. Davis; Andrej Sali

Protein–protein interactions are challenging targets for modulation by small molecules. Here, we propose an approach that harnesses the increasing structural coverage of protein complexes to identify small molecules that may target protein interactions. Specifically, we identify ligand and protein binding sites that overlap upon alignment of homologous proteins. Of the 2,619 protein structure families observed to bind proteins, 1,028 also bind small molecules (250–1000 Da), and 197 exhibit a statistically significant (p<0.01) overlap between ligand and protein binding positions. These “bi-functional positions”, which bind both ligands and proteins, are particularly enriched in tyrosine and tryptophan residues, similar to “energetic hotspots” described previously, and are significantly less conserved than mono-functional and solvent exposed positions. Homology transfer identifies ligands whose binding sites overlap at least 20% of the protein interface for 35% of domain–domain and 45% of domain–peptide mediated interactions. The analysis recovered known small-molecule modulators of protein interactions as well as predicted new interaction targets based on the sequence similarity of ligand binding sites. We illustrate the predictive utility of the method by suggesting structural mechanisms for the effects of sanglifehrin A on HIV virion production, bepridil on the cellular entry of anthrax edema factor, and fusicoccin on vertebrate developmental pathways. The results, available at http://pibase.janelia.org, represent a comprehensive collection of structurally characterized modulators of protein interactions, and suggest that homologous structures are a useful resource for the rational design of interaction modulators.


BMC Bioinformatics | 2007

The AnnoLite and AnnoLyze programs for comparative annotation of protein structures

Marc A. Marti-Renom; Andrea Rossi; Fatima Al-Shahrour; Fred P. Davis; Ursula Pieper; Joaquín Dopazo; Andrej Sali

BackgroundAdvances in structural biology, including structural genomics, have resulted in a rapid increase in the number of experimentally determined protein structures. However, about half of the structures deposited by the structural genomics consortia have little or no information about their biological function. Therefore, there is a need for tools for automatically and comprehensively annotating the function of protein structures. We aim to provide such tools by applying comparative protein structure annotation that relies on detectable relationships between protein structures to transfer functional annotations. Here we introduce two programs, AnnoLite and AnnoLyze, which use the structural alignments deposited in the DBAli database.DescriptionAnnoLite predicts the SCOP, CATH, EC, InterPro, PfamA, and GO terms with an average sensitivity of ~90% and average precision of ~80%. AnnoLyze predicts ligand binding site and domain interaction patches with an average sensitivity of ~70% and average precision of ~30%, correctly localizing binding sites for small molecules in ~95% of its predictions.ConclusionThe AnnoLite and AnnoLyze programs for comparative annotation of protein structures can reliably and automatically annotate new protein structures. The programs are fully accessible via the Internet as part of the DBAli suite of tools at http://salilab.org/DBAli/.


PLOS Computational Biology | 2005

Structural modeling of protein interactions by analogy: application to PSD-95.

Dmitry Korkin; Fred P. Davis; Frank Alber; Tinh N. Luong; Min-yi Shen; Vladan Lucic; Mary B. Kennedy; Andrej Sali

We describe comparative patch analysis for modeling the structures of multidomain proteins and protein complexes, and apply it to the PSD-95 protein. Comparative patch analysis is a hybrid of comparative modeling based on a template complex and protein docking, with a greater applicability than comparative modeling and a higher accuracy than docking. It relies on structurally defined interactions of each of the complex components, or their homologs, with any other protein, irrespective of its fold. For each component, its known binding modes with other proteins of any fold are collected and expanded by the known binding modes of its homologs. These modes are then used to restrain conventional molecular docking, resulting in a set of binary domain complexes that are subsequently ranked by geometric complementarity and a statistical potential. The method is evaluated by predicting 20 binary complexes of known structure. It is able to correctly identify the binding mode in 70% of the benchmark complexes compared with 30% for protein docking. We applied comparative patch analysis to model the complex of the third PSD-95, DLG, and ZO-1 (PDZ) domain and the SH3-GK domains in the PSD-95 protein, whose structure is unknown. In the first predicted configuration of the domains, PDZ interacts with SH3, leaving both the GMP-binding site of guanylate kinase (GK) and the C-terminus binding cleft of PDZ accessible, while in the second configuration PDZ interacts with GK, burying both binding sites. We suggest that the two alternate configurations correspond to the different functional forms of PSD-95 and provide a possible structural description for the experimentally observed cooperative folding transitions in PSD-95 and its homologs. More generally, we expect that comparative patch analysis will provide useful spatial restraints for the structural characterization of an increasing number of binary and higher-order protein complexes.

Collaboration


Dive into the Fred P. Davis's collaboration.

Top Co-Authors

Avatar

Andrej Sali

University of California

View shared research outputs
Top Co-Authors

Avatar

Sean R. Eddy

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Serge Picard

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Ursula Pieper

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dmitry Korkin

Worcester Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar

Gilbert L. Henry

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Min-yi Shen

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge