Gaetano Di Bella
University of Palermo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gaetano Di Bella.
Bioresource Technology | 2014
D. Di Trapani; Gaetano Di Bella; Giorgio Mannina; Michele Torregrossa; Gaspare Viviani
Two pilot plant systems were investigated for the treatment of wastewater subject to a gradual increase of salinity. In particular, a membrane bioreactor (MBR) and a moving bed biofilm membrane bioreactor (MB-MBR) were analyzed. Carbon and ammonium removal, kinetic constants and membranes fouling rates have been assessed. Both plants showed very high efficiency in terms of carbon and ammonium removal and the gradual salinity increase led to a good acclimation of the biomass, as confirmed by the respirometric tests. Significant biofilm detachments from carriers were experienced, which contributed to increase the irreversible superficial cake deposition. However, this aspect prevented the pore fouling tendency in the membrane module of MB-MBR system. On the contrary, the MBR pilot, even showing a lower irreversible cake deposition, was characterized by a higher pore fouling tendency.
Bioresource Technology | 2013
Alida Cosenza; Gaetano Di Bella; Giorgio Mannina; Michele Torregrossa
In contraposition to conventional activated sludge processes, the foaming phenomenon in membrane bioreactor (MBR) is still in its infancy. On the other hand, although several studies have been carried out for better understanding the fouling phenomenon in MBR there are still some gaps in the up-to-date knowledge. The extracellular polymeric substances (EPSs) may have a primary role in fouling and foaming phenomena which in turn can be crucial for MBRs. The aim of this study is to detect a possible relationship that EPSs may have with fouling and foaming in an MBR for wastewater treatment. Foaming phenomenon is monitored by performing specific foam-tests: Foam Power, Scum Index, Foam Rating and filamentous abundance. Results show a high correlation between fouling vs EPS and foaming vs bound EPSs. A relationship between foaming and fouling was also found: in general, when foaming occurred the fouling rate decreases because the EPS bound remained trapped in the floating scum.
Bioresource Technology | 2013
Gaetano Di Bella; D. Di Trapani; Michele Torregrossa; Gaspare Viviani
Membrane bioreactors produce high quality effluents that could be suitable for reuse. However, when treating high strength wastewater subject to a salinity increase, a modification of biomass characteristics may occur. This circumstance is of importance, since it can have a significant impact in terms of biokinetic as well as fouling behaviour. The aim of the study was to evaluate the performance of a pilot plant MBR, in terms of biomass activity and membrane fouling, fed with high strength synthetic wastewater, when subject to a salinity increase. With normal salinity, the pilot plant showed high removal efficiencies and high biomass respiratory activity. On the other hand, the salinity increase significantly affected the removal efficiency as well as the SMP production. Furthermore, the salinity increase showed a strong effect on biomass activity, reducing in particular the respiration rates of autotrophic populations.
Waste Management | 2011
Gaetano Di Bella; D. Di Trapani; Gaspare Viviani
Methane (CH(4)) diffuse emissions from Municipal Solid Waste (MSW) landfills represent one of the most important anthropogenic sources of greenhouse gas. CH(4) is produced by anaerobic biodegradation of organic matter in landfilled MSW and constitutes a major component of landfill gas (LFG). Gas recovery is a suitable method to effectively control CH(4) emissions from landfill sites and the quantification of CH(4) emissions represents a good tool to evaluate the effectiveness of a gas recovery system in reducing LFG emissions. In particular, LFG emissions can indirectly be evaluated from mass balance equations between LFG production, recovery and oxidation in the landfill, as well as by a direct approach based on LFG emission measurements from the landfill surface. However, up to now few direct measurements of landfill CH(4) diffuse emissions have been reported in the technical literature. In the present study, both modeling and direct emission measuring methodologies have been applied to the case study of Bellolampo landfill located in Palermo, Italy. The main aim of the present study was to evaluate CH(4) diffuse emissions, based on direct measurements carried out with the flux accumulation chamber (static, non-stationary) method, as well as to obtain the CH(4) contoured flux map of the landfill. Such emissions were compared with the estimate achieved by means of CH(4) mass balance equations. The results showed that the emissions obtained by applying the flux chamber method are in good agreement with the ones derived by the application of the mass balance equation, and that the evaluated contoured flux maps represent a reliable tool to locate areas with abnormal emissions in order to optimize the gas recovery system efficiency.
Bioresource Technology | 2011
Gaetano Di Bella; Michele Torregrossa; Gaspare Viviani
Foaming in Membrane BioReactor (MBR) is a frequently discussed topic. Some authors reported that the phenomenon is due to filamentous organisms, like at Conventional Activated Sludge (CAS) plants. However, in recent years, other authors reported that the Extra-cellular Polymer Substances (EPSs) concentration is an important factor for controlling foam as well. Nevertheless, even if a number of MBR plants are affected by foaming, presently there are no suitable methods to evaluate the phenomenon. To facilitate the study of this controversial phenomenon in an MBR system, certain foam tests proposed in the past for CASPs were investigated. The results of the tests were able to adequately measure quantity, stability and quality of the foam. In particular, the Scum Index increased proportionally with the EPS concentration and mixed liquor viscosity; Foam Power was mainly correlated with the protein concentration of in the EPS; Foam Rating was also correlated with the EPS concentration.
Journal of Hazardous Materials | 2015
Gaetano Di Bella; Nadia Di Prima; D. Di Trapani; Gabriele Freni; Maria Gabriella Giustra; Michele Torregrossa; Gaspare Viviani
In order to prevent hydrocarbon discharge at sea from ships, the International Maritime Organization (IMO) enacted the MARPOL 73/78 convention in which any oil and oil residue discharged in wastewater streams must contain less than 5 ppm hydrocarbons. Effective treatment of this petroleum-contaminated water is essential prior to its release into the environment, in order to prevent pollution problem for marine ecosystems as well as for human health. Therefore, two bench scale membrane bioreactors (MBRs) were investigated for hydrocarbon biodegradation. The two plants were initially fed with synthetic wastewater characterised by an increasing salinity, in order to enhance biomass acclimation to salinity. Subsequently, they were fed with a mixture of synthetic wastewater and real shipboard slops (with an increasing slops percentage up to 50% by volume). The results indicated a satisfactory biomass acclimation level in both plants with regards to salinity, providing significant removal efficiencies. The real slops exerted an inhibitory effect on the biomass, partially due to hydrocarbons as well as to other concomitant influences from other compounds contained in the real slops difficult to evaluate a priori. Nevertheless, a slight adaptation of the biomass to the new conditions was observed, with increasing removal efficiencies, despite the significant slops percentage.
Water Science and Technology | 2012
Michele Torregrossa; Gaetano Di Bella; D. Di Trapani
The excess biomass produced during biological treatment of municipal wastewater represents a major issue worldwide, as its disposal implies environmental, economic and social impacts. Therefore, there has been a growing interest in developing technologies to reduce sludge production. The main proposed strategies can be categorized according to the place inside the wastewater treatment plant (WWTP) where the reduction takes place. In particular, sludge minimization can be achieved in the wastewater line as well as in the sludge line. This paper presents the results of two pilot scale systems, to evaluate their feasibility for sludge reduction and to understand their effect on biomass activity: (1) a pilot plant with an ozone contactor in the return activated sludge (RAS) stream for the exposition of sludge to a low ozone dosage; and (2) an oxic-settling-anaerobic (OSA) process with high retention time in the anaerobic sludge holding tank have been studied. The results showed that both technologies enabled significant excess sludge reduction but produced a slight decrease of biomass respiratory activity.
Waste Management | 2012
Gaetano Di Bella; D. Di Trapani; Giorgio Mannina; Gaspare Viviani
The paper presents a 1D mathematical model for the simulation of the percolation fluxes throughout a landfill for municipal solid waste (MSW). Specifically, the model was based on mass balance equations, that enable simulation of the formation of perched leachate zones in a landfill for MSW. The model considers the landfill divided in several layers evaluating the inflow to and outflow from each layer as well as the continuous moisture distribution. The infiltration flow was evaluated by means of the Darcys law for an unsaturated porous medium, while the moisture distribution evaluation has been carried out on the basis of the theory of the vertically distributed unsaturated flow. The solution of the model has been obtained by means of the finite difference method. The model has been applied to a semi-idealized landfill located in Palermo landfill (Bellolampo). Specifically, field measurements were conducted to determine the relationship between waste density and applied vertical strain. This relationship was then used to relate vertical strain to waste porosity. The inflow rate to the system was simulated via a synthetic hyetograph whose characteristics have been identified in a previous hydrologic study. Three simulations, each with a different initial moisture content, were conducted. The model results showed a different response of the landfill in terms both of flow rates throughout the landfill and moisture profile. Indeed, the initial moisture content drastically influenced not only the formation of perched leachate zones but also their extension. The model can be a useful tool in predicting potential for the formation of perched leachate zones.
Desalination and Water Treatment | 2016
Riccardo Campo; Nadia Di Prima; Maria Gabriella Giustra; Gabriele Freni; Gaetano Di Bella
AbstractThis work analyses the performance of a moving bed-membrane bioreactor (MB-MBR) in the treatment of saline wastewater contaminated by hydrocarbons from washing of oil tankers with seawater (slops). In order to allow a biomass acclimation, a gradual increase in salinity and total petroleum hydrocarbons (TPHs) were adopted during six experimental phases. The results showed that acclimation of heterotrophic strains to TPHs occurred during Phase IV (30% by volume of slop). This is confirmed by an evident increase in the biological removal efficiencies of chemical oxygen demand, total organic carbon and TPHs. In particular, the TPHs removal efficiency increased from about 8% up to the range of 35–70%. No inhibition of the ammonia oxidizing bacteria (AOB) was noted except for Phase VI (100% by volume of slop) characterized by a collapse of ammonium removal efficiency from about 95% to about 21–24%. An accumulation of nitrite at the end of Phase IV, suggested an inhibition of nitrite-oxidizing bacteria (...
Journal of Environmental Engineering | 2017
Riccardo Campo; Shibam Mitra; Gaetano Di Bella
AbstractThis work concerns the simultaneous effects of salinity and hydrocarbons on the biological activity and membrane fouling of a moving bed-membrane bioreactor (MB-MBR) fed with real high-sali...