Gautam D. Badhwar
Analysis Group
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gautam D. Badhwar.
Radiation Research | 2001
Francis A. Cucinotta; Walter Schimmerling; John W. Wilson; Leif E. Peterson; Gautam D. Badhwar; Premkumar B. Saganti; J. F. Dicello
Abstract Cucinotta, F. A., Schimmerling, W., Wilson, J. W., Peterson, L. E., Badhwar, G. D., Saganti, P. B. and Dicello, J. F. Space Radiation Cancer Risks and Uncertainties for Mars Missions. Radiat. Res. 156, 682–688 (2001). Projecting cancer risks from exposure to space radiation is highly uncertain because of the absence of data for humans and because of the limited radiobiology data available for estimating late effects from the high-energy and charge (HZE) ions present in the galactic cosmic rays (GCR). Cancer risk projections involve many biological and physical factors, each of which has a differential range of uncertainty due to the lack of data and knowledge. We discuss an uncertainty assessment within the linear-additivity model using the approach of Monte Carlo sampling from subjective error distributions that represent the lack of knowledge in each factor to quantify the overall uncertainty in risk projections. Calculations are performed using the space radiation environment and transport codes for several Mars mission scenarios. This approach leads to estimates of the uncertainties in cancer risk projections of 400–600% for a Mars mission. The uncertainties in the quality factors are dominant. Using safety standards developed for low-Earth orbit, long-term space missions (>90 days) outside the Earths magnetic field are currently unacceptable if the confidence levels in risk projections are considered. Because GCR exposures involve multiple particle or δ-ray tracks per cellular array, our results suggest that the shape of the dose response at low dose rates may be an additional uncertainty for estimating space radiation risks.
Radiation Research | 1997
Gautam D. Badhwar
The radiation environment in low-Earth orbit is a complex mixture of galactic cosmic radiation, particles of trapped belts and secondary particles generated in both the spacecraft and Earths atmosphere. Infrequently, solar energetic particles are injected into the Earths magnetosphere and can penetrate into low-Earth orbiting spacecraft. In this paper, the sources of charged-particle radiation that contribute significantly to radiation exposure on manned spacecraft are reviewed briefly, and estimates of expected dose rate for the upcoming International Space Station that are based on measurements made on the Russian Mir orbital station are provided.
Acta Astronautica | 2001
John W. Wilson; Judy L. Shinn; Ram K. Tripathi; Robert C. Singleterry; Martha S. Clowdsley; Sheila A. Thibeault; F.M. Cheatwood; W. Schimmerling; F. A. Cucinotta; Gautam D. Badhwar; Ahmed K. Noor; Myung-Hee Y. Kim; F. F. Badavi; John H. Heinbockel; J. Miller; C. Zeitlin; L. Heilbronn
The exposures in deep space are largely from the Galactic Cosmic Rays (GCR) for which there is as yet little biological experience. Mounting evidence indicates that conventional linear energy transfer (LET) defined protection quantities (quality factors) may not be appropriate for GCR ions. The available biological data indicates that aluminum alloy structures may generate inherently unhealthy internal spacecraft environments in the thickness range for space applications. Methods for optimization of spacecraft shielding and the associated role of materials selection are discussed. One material which may prove to be an important radiation protection material is hydrogenated carbon nanofibers.
Radiation Research | 1994
Gautam D. Badhwar; F. A. Cucinotta; L. A. Braby; A. Konradi
A new class of tissue-equivalent proportional counters has been flown on two space shuttle flights. These detectors and their associated electronics cover a lineal energy range from 0.4 to 1250 keV/microns with a multichannel analyzer resolution of 0.1 keV/microns from 0.4 to 20 keV/microns and 5 keV/microns from 20 to 1250 keV/microns. These detectors provide the most complete dynamic range and highest resolution of any technique currently in use. On one mission, one detector was mounted in the Shuttle payload bay and another older model in the mid-deck, thus providing information on the depth dependence of the lineal energy spectrum. A detailed comparison of the observed lineal energy and calculated LET spectra for galactic cosmic radiation shows that, although the radiation transport models provide a rather accurate description of the dose (+/- 15%) and equivalent dose (+/- 15%), the calculations significantly underestimate the frequency of events below about 100 keV/microns. This difference cannot be explained by the inclusion of the contribution of splash protons. The contribution of the secondary pions, kaons and electrons produced in the Shuttle shielding, if included in the radiation transport model, may explain these differences. There are also significant differences between the model predictions and observations above 140 keV/microns, particularly for 28.5 degrees inclination orbit.
Radiation Research | 2002
Gautam D. Badhwar; William Atwell; F. F. Badavi; T. C. Yang; T. F. Cleghorn
Abstract Badhwar, G. D., Atwell, W., Badavi, F. F., Yang, T. C. and Cleghorn, T. F. Space Radiation Absorbed Dose Distribution in a Human Phantom. Radiat. Res. 157, 76–91 (2002). The radiation risk to astronauts has always been based on measurements using passive thermoluminescent dosimeters (TLDs). The skin dose is converted to dose equivalent using an average radiation quality factor based on model calculations. The radiological risk estimates, however, are based on organ and tissue doses. This paper describes results from the first space flight (STS-91, 51.65° inclination and ∼380 km altitude) of a fully instrumented Alderson Rando™ phantom torso (with head) to relate the skin dose to organ doses. Spatial distributions of absorbed dose in 34 1-inch-thick sections measured using TLDs are described. There is about a 30% change in dose as one moves from the front to the back of the phantom body. Small active dosimeters were developed specifically to provide time-resolved measurements of absorbed dose rates and quality factors at five organ locations (brain, thyroid, heart/lung, stomach and colon) inside the phantom. Using these dosimeters, it was possible to separate the trapped-proton and the galactic cosmic radiation components of the doses. A tissue-equivalent proportional counter (TEPC) and a charged-particle directional spectrometer (CPDS) were flown next to the phantom torso to provide data on the incident internal radiation environment. Accurate models of the shielding distributions at the site of the TEPC, the CPDS and a scalable Computerized Anatomical Male (CAM) model of the phantom torso were developed. These measurements provided a comprehensive data set to map the dose distribution inside a human phantom, and to assess the accuracy and validity of radiation transport models throughout the human body. The results show that for the conditions in the International Space Station (ISS) orbit during periods near the solar minimum, the ratio of the blood-forming organ dose rate to the skin absorbed dose rate is about 80%, and the ratio of the dose equivalents is almost one. The results show that the GCR model dose-rate predictions are 20% lower than the observations. Assuming that the trapped-belt models lead to a correct orbit-averaged energy spectrum, the measurements of dose rates inside the phantom cannot be fully understood. Passive measurements using 6Li- and 7Li-based detectors on the astronauts and inside the brain and thyroid of the phantom show the presence of a significant contribution due to thermal neutrons, an area requiring additional study.
Radiation Research | 1994
Gautam D. Badhwar; Francis A. Cucinotta; Patrick M. O'Neill
The radiation dose received by crew members in interplanetary space is influenced by the stage of the solar cycle. Using the recently developed models of the galactic cosmic radiation (GCR) environment and the energy-dependent radiation transport code, we have calculated the dose at 0 and 5 cm water depth; using a computerized anatomical man (CAM) model, we have calculated the skin, eye and blood-forming organ (BFO) doses as a function of aluminum shielding for various solar minima and maxima between 1954 and 1989. These results show that the equivalent dose is within about 15% of the mean for the various solar minima (maxima). The maximum variation between solar minimum and maximum equivalent dose is about a factor of three. We have extended these calculations for the 1976-1977 solar minimum to five practical shielding geometries: Apollo Command Module, the least and most heavily shielded locations in the U.S. space shuttle mid-deck, center of the proposed Space Station Freedom cluster and sleeping compartment of the Skylab. These calculations, using the quality factor of ICRP 60, show that the average CAM BFO equivalent dose is 0.46 Sv/year. Based on an approach that takes fragmentation into account, we estimate a calculation uncertainty of 15% if the uncertainty in the quality factor is neglected.
Advances in Space Research | 1996
F. A. Cucinotta; Lawrence W. Townsend; John Wilson; Judy L. Shinn; Gautam D. Badhwar; Rajendra R. Dubey
Light nuclei are present in the primary galactic cosmic rays (GCR) and are produced in thick targets due to projectile or target fragmentation from both nucleon and heavy ion induced reactions. In the primary GCR, 4He is the most abundant nucleus after 1H. However, there are also a substantial fluxes of 2H and 3He. In this paper we describe theoretical models based on quantum multiple scattering theory for the description of light ion nuclear interactions. The energy dependence of the light ion fragmentation cross section is considered with comparisons of inclusive yields and secondary momentum distributions to experiments described. We also analyze the importance of a fast component of lights ions from proton and neutron induced target fragmentation. These theoretical models have been incorporated into the cosmic ray transport code HZETRN and will be used to analyze the role of shielding materials in modulating the production and the energy spectrum of light ions.
Advances in Space Research | 2004
C. Zeitlin; Timothy F. Cleghorn; F. A. Cucinotta; Premkumar B. Saganti; V. Andersen; Kerry Lee; L. Pinsky; William Atwell; R. Turner; Gautam D. Badhwar
Space radiation presents a hazard to astronauts, particularly those journeying outside the protective influence of the geomagnetosphere. Crews on future missions to Mars will be exposed to the harsh radiation environment of deep space during the transit between Earth and Mars. Once on Mars, they will encounter radiation that is only slightly reduced, compared to free space, by the thin Martian atmosphere. NASA is obliged to minimize, where possible, the radiation exposures received by astronauts. Thus, as a precursor to eventual human exploration, it is necessary to measure the Martian radiation environment in detail. The MARIE experiment, aboard the 2001 Mars Odyssey spacecraft, is returning the first data that bear directly on this problem. Here we provide an overview of the experiment, including introductory material on space radiation and radiation dosimetry, a description of the detector, model predictions of the radiation environment at Mars, and preliminary dose-rate data obtained at Mars.
Radiation Research | 2000
Hiroshi Yasuda; Gautam D. Badhwar; Tatsuto Komiyama; Kazunobu Fujitaka
Abstract Yasuda, H., Badhwar, G. D., Komiyama, T. and Fujitaka, K. Effective Dose Equivalent on the Ninth Shuttle–Mir Mission (STS-91). Organ and tissue doses and effective dose equivalent were measured using a life-size human phantom on the ninth Shuttle–Mir Mission (STS-91, June 1998), a 9.8-day spaceflight at low-Earth orbit (about 400 km in altitude and 51.65° in inclination). The doses were measured at 59 positions using a combination of thermoluminescent dosimeters of Mg2SiO4:Tb (TDMS) and plastic nuclear track detectors (PNTD). In correcting the change in efficiency of the TDMS, it was assumed that reduction of efficiency is attributed predominantly to HZE particles with energy greater than 100 MeV nucleon–1. A conservative calibration curve was chosen for determining LET from the PNTD track-formation sensitivities. The organ and tissue absorbed doses during the mission ranged from 1.7 to 2.7 mGy and varied by a factor of 1.6. The dose equivalent ranged from 3.4 to 5.2 mSv and varied by a factor of 1.5 on the basis of the dependence of Q on LET in the 1990 recommendations of the ICRP. The effective quality factor (Qe) varied from 1.7 to 2.4. The dose equivalents for several radiation-sensitive organs, such as the stomach, lung, gonad and breast, were not significantly different from the skin dose equivalent (Hskin). The effective dose equivalent was evaluated as 4.1 mSv, which was about 90% of the Hskin.
IEEE Transactions on Nuclear Science | 1998
Judy L. Shinn; Francis A. Cucinotta; L.C. Simonsen; John W. Wilson; F. F. Badavi; Gautam D. Badhwar; J. Miller; C. Zeitlin; L. Heilbronn; Ram K. Tripathi; M.S. Clowdsley; John H. Heinbockel; M.A. Xapsos
The HZETRN code has been developed over the past decade to evaluate the local radiation fields within sensitive materials on spacecraft in the space environment. Most of the more important nuclear and atomic processes are now modeled and evaluation within a complex spacecraft geometry with differing material components, including transition effects across boundaries of dissimilar materials, are included. The atomic/nuclear database and transport procedures have received limited validation in laboratory testing with high energy ion beams. The codes have been applied in design of the SAGE-III instrument resulting in material changes to control injurious neutron production, in the study of the Space Shuttle single event upsets, and in validation with space measurements (particle telescopes, tissue equivalent proportional counters, CR-39) on Shuttle and Mir. The present paper reviews the code development and presents recent results in laboratory and space flight validation.