Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William Atwell is active.

Publication


Featured researches published by William Atwell.


Radiation Measurements | 1996

In-flight radiation measurements on STS-60

G.D. Badhwar; M.J. Golightly; A. Konradi; William Atwell; J.W. Kern; B. Cash; E.V. Benton; A.L. Franks; D. Sanner; R.P. Keegan; L.A. Frigo; Vladislav M. Petrov; I.V. Tchernykh; Yu.A. Akatov; V. Shurshakov; V.V. Arkhangelsky; V.V. Kushin; N.A. Klyachin; N. Vana; W. Schoner

A joint investigation between the United States and Russia to study the radiation environment inside the Space Shuttle flight STS-60 was carried out as part of the Shuttle-Mir Science Program (Phase 1). This is the first direct comparison of a number of different dosimetric measurement techniques between the two countries. STS-60 was launched on 3 February 1994 in a nearly circular 57 degrees x 353 km orbit with five U.S. astronauts and one Russian cosmonaut for 8.3 days. A variety of instruments provided crew radiation exposure, absorbed doses at fixed locations, neutron fluence and dose equivalent, linear energy transfer (LET) spectra of trapped and galactic cosmic radiation, and energy spectra and angular distribution of trapped protons. In general, there is good agreement between the U.S. and Russian measurements. The AP8 Min trapped proton model predicts an average of 1.8 times the measured absorbed dose. The average quality factor determined from measured lineal energy, y, spectra using a tissue equivalent proportional counter (TEPC), is in good agreement with that derived from the high temperature peak in the 6LiF thermoluminescent detectors (TLDs). The radiation exposure in the mid-deck locker from neutrons below 1 MeV was 2.53 +/- 1.33 microSv/day. The absorbed dose rates measured using a tissue equivalent proportional counter, were 171.1 +/- 0.4 and 127.4 +/- 0.4 microGy/day for trapped particles and galactic cosmic rays, respectively. The combined dose rate of 298.5 +/- 0.82 microGy/day is about a factor of 1.4 higher than that measured using TLDs. The westward longitude drift of the South Atlantic Anomaly (SAA) is estimated to be 0.22 +/- 0.02 degrees/y. We evaluated the effects of spacecraft attitudes on TEPC dose rates due to the highly anisotropic low-earth orbit proton environment. Changes in spacecraft attitude resulted in dose-rate variations by factors of up to 2 at the location of the TEPC.


Radiation Research | 2002

Space radiation absorbed dose distribution in a human phantom.

Gautam D. Badhwar; William Atwell; F. F. Badavi; T. C. Yang; T. F. Cleghorn

Abstract Badhwar, G. D., Atwell, W., Badavi, F. F., Yang, T. C. and Cleghorn, T. F. Space Radiation Absorbed Dose Distribution in a Human Phantom. Radiat. Res. 157, 76–91 (2002). The radiation risk to astronauts has always been based on measurements using passive thermoluminescent dosimeters (TLDs). The skin dose is converted to dose equivalent using an average radiation quality factor based on model calculations. The radiological risk estimates, however, are based on organ and tissue doses. This paper describes results from the first space flight (STS-91, 51.65° inclination and ∼380 km altitude) of a fully instrumented Alderson Rando™ phantom torso (with head) to relate the skin dose to organ doses. Spatial distributions of absorbed dose in 34 1-inch-thick sections measured using TLDs are described. There is about a 30% change in dose as one moves from the front to the back of the phantom body. Small active dosimeters were developed specifically to provide time-resolved measurements of absorbed dose rates and quality factors at five organ locations (brain, thyroid, heart/lung, stomach and colon) inside the phantom. Using these dosimeters, it was possible to separate the trapped-proton and the galactic cosmic radiation components of the doses. A tissue-equivalent proportional counter (TEPC) and a charged-particle directional spectrometer (CPDS) were flown next to the phantom torso to provide data on the incident internal radiation environment. Accurate models of the shielding distributions at the site of the TEPC, the CPDS and a scalable Computerized Anatomical Male (CAM) model of the phantom torso were developed. These measurements provided a comprehensive data set to map the dose distribution inside a human phantom, and to assess the accuracy and validity of radiation transport models throughout the human body. The results show that for the conditions in the International Space Station (ISS) orbit during periods near the solar minimum, the ratio of the blood-forming organ dose rate to the skin absorbed dose rate is about 80%, and the ratio of the dose equivalents is almost one. The results show that the GCR model dose-rate predictions are 20% lower than the observations. Assuming that the trapped-belt models lead to a correct orbit-averaged energy spectrum, the measurements of dose rates inside the phantom cannot be fully understood. Passive measurements using 6Li- and 7Li-based detectors on the astronauts and inside the brain and thyroid of the phantom show the presence of a significant contribution due to thermal neutrons, an area requiring additional study.


Advances in Space Research | 2004

Overview of the Martian radiation environment experiment.

C. Zeitlin; Timothy F. Cleghorn; F. A. Cucinotta; Premkumar B. Saganti; V. Andersen; Kerry Lee; L. Pinsky; William Atwell; R. Turner; Gautam D. Badhwar

Space radiation presents a hazard to astronauts, particularly those journeying outside the protective influence of the geomagnetosphere. Crews on future missions to Mars will be exposed to the harsh radiation environment of deep space during the transit between Earth and Mars. Once on Mars, they will encounter radiation that is only slightly reduced, compared to free space, by the thin Martian atmosphere. NASA is obliged to minimize, where possible, the radiation exposures received by astronauts. Thus, as a precursor to eventual human exploration, it is necessary to measure the Martian radiation environment in detail. The MARIE experiment, aboard the 2001 Mars Odyssey spacecraft, is returning the first data that bear directly on this problem. Here we provide an overview of the experiment, including introductory material on space radiation and radiation dosimetry, a description of the detector, model predictions of the radiation environment at Mars, and preliminary dose-rate data obtained at Mars.


Radiation Measurements | 1995

A study of the radiation environment on board the Space Shuttle flight STS-57

G.D. Badhwar; William Atwell; E.V. Benton; A.L. Frank; R.P. Keegan; V.E. Dudkin; O.N. Karpov; Yu.V. Potapov; A.B. Akopova; N.V. Magradze; L.V. Melkumyan; Sh.B. Rshtuni

A joint NASA-Russian study of the radiation environment inside a SPACEHAB 2 locker on Space Shuttle flight STS-57 was conducted. The Shuttle flew in a nearly circular orbit of 28.5 degrees inclination and 462 km altitude. The locker carried a charged particle spectrometer, a tissue equivalent proportional counter (TEPC), and two area passive detectors consisting of combined NASA plastic nuclear track detectors (PNTDs) and thermoluminescent detectors (TLDs), and Russian nuclear emulsions, PNTDs and TLDs. All the detector systems were shielded by the same Shuttle mass distribution. This makes possible a direct comparison of the various dose measurement techniques. In addition, measurements of the neutron energy spectrum were made using the proton recoil technique. The results show good agreement between the integral LET spectrum of the combined galactic and trapped particles using the tissue equivalent proportional counter and track detectors between about 15 keV/micrometers and 200 keV/micrometers. The LET spectrum determined from nuclear emulsions was systematically lower by about 50%, possibly due to emulsion fading. The results show that the TEPC measured an absorbed dose 20% higher than the TLDs, due primarily to an increased TEPC response to neutrons and a low sensitivity of TLDs to high LET particles under normal processing techniques. There is a significant flux of high energy neutrons that is currently not taken into consideration in dose equivalent calculations. The results of the analysis of the spectrometer data will be reported separately.


Radiation Measurements | 2002

Radiation measurements on the Mir Orbital Station.

Gautam D. Badhwar; William Atwell; Günther Reitz; R. Beaujean; W. Heinrich

Radiation measurements made onboard the MIR Orbital Station have spanned nearly a decade and covered two solar cycles, including one of the largest solar particle events, one of the largest magnetic storms, and a mean solar radio flux level reaching 250 x 10(4) Jansky that has been observed in the last 40 years. The cosmonaut absorbed dose rates varied from about 450 microGy day-1 during solar minimum to approximately half this value during the last solar maximum. There is a factor of about two in dose rate within a given module, and a similar variation from module to module. The average radiation quality factor during solar minimum, using the ICRP-26 definition, was about 2.4. The drift of the South Atlantic Anomaly was measured to be 6.0 +/- 0.5 degrees W, and 1.6 +/- 0.5 degrees N. These measurements are of direct applicability to the International Space Station. This paper represents a comprehensive review of Mir Space Station radiation data available from a variety of sources.


Journal of Spacecraft and Rockets | 1987

Radiation environment models and the atmospheric cutoff.

Andrei Konradi; Alva C. Hardy; William Atwell

The limitations of radiation environment models are examined by applying the model to the South Atlantic anomaly (SAA). The local magnetic-field-intensity (in gauss) and McIlwain (1961) drift-shell-parameter contours in the SAA are analyzed. It is noted that it is necessary to decouple the atmospheric absorption effects from the trapped radiation models in order to obtain accurate radiation dose predictions. Two methods for obtaining more accurate results are proposed.


Radiation Measurements | 1996

Intercomparison of radiation measurements on STS-63

G.D. Badhwar; William Atwell; B. Cash; M. Weyland; Vladislav M. Petrov; I.V. Tchernykh; Yu.A. Akatov; V.A. Shurshakov; V.V. Arkhangelsky; V.V. Kushin; N.A. Klyachin; E.V. Benton; A.L. Frank; E. R. Benton; L.A. Frigo; V.E. Dudkin; Yu.V. Potapov; N. Vana; W. Schoner; M. Fugger

A joint NASA Russia study of the radiation environment inside the Space Shuttle was performed on STS-63. This was the second flight under the Shuttle-Mir Science Program (Phase 1). The Shuttle was launched on 2 February 1995, in a 51.65 degrees inclination orbit and landed at Kennedy Space Center on 11 February 1995, for a total flight duration of 8.27 days. The Shuttle carried a complement of both passive and active detectors distributed throughout the Shuttle volume. The crew exposure varied from 1962 to 2790 microGy with an average of 2265.8 microGy or 273.98 microGy/day. Crew exposures varied by a factor of 1.4, which is higher than usual for STS mission. The flight altitude varied from 314 to 395 km and provided a unique opportunity to obtain dose variation with altitude. Measurements of the average east-west dose variation were made using two active solid state detectors. The dose rate in the Spacehab locker, measured using a tissue equivalent proportional counter (TEPC), was 413.3 microGy/day, consistent with measurements made using thermoluminescent detectors (TLDs) in the same locker. The average quality factor was 2.33, and although it was higher than model calculations, it was consistent with values derived from high temperature peaks in TLDs. The dose rate due to galactic cosmic radiation was 110.6 microGy/day and agreed with model calculations. The dose rate from trapped particles was 302.7 microGy/day, nearly a factor of 2 lower than the prediction of the AP8 model. The neutrons in the intermediate energy range of 1-20 MeV contributed 13 microGy/day and 156 microSv/day, respectively. Analysis of data from the charged particle spectrometer has not yet been completed.


Radiation Research | 1993

Temporal analysis of the October 1989 proton flare using computerized anatomical models

Lisa C. Simonsen; Francis A. Cucinotta; William Atwell; John E. Nealy

The GOES-7 time history data of hourly averaged integral proton fluxes at various particle kinetic energies are analyzed for the solar proton event that occurred between October 19 and 29, 1989. By analyzing the time history data, the dose rates which may vary over many orders of magnitude in the early phases of the flare can be estimated as well as the cumulative dose as a function of time. Basic transport calculations are coupled with detailed body organ thickness distributions from computerized anatomical models to estimate dose rates and cumulative doses to 20 critical body organs. For a 5-cm-thick water shield, cumulative skin, eye, and blood-forming-organ dose equivalents of 1.27, 1.23, and 0.41 Sv, respectively, are estimated. These results are approximately 40-50% less than the widely used 0- and 5-cm slab dose estimates. The risk of cancer incidence and mortality are also estimated for astronauts protected by various water shield thicknesses.


Advances in Space Research | 1998

Radiation environment on the Mir orbital station during solar minimum.

G.D. Badhwar; William Atwell; B. Cash; Vladislav M. Petrov; Yu.A. Akatov; I.V. Tchernykh; V. Shurshakov; V. Arkhangelsky

The Mir station has been in a 51.65 degrees inclination orbit since March 1986. In March 1995, the first US astronaut flew on the Mir-18 mission and returned on the Space Shuttle in July 1995. Since then three additional US astronauts have stayed on orbit for up to 6 months. Since the return of the first US astronaut, both the Spektr and Priroda modules have docked with Mir station, altering the mass shielding distribution. Radiation measurements, including the direct comparison of US and Russian absorbed dose rates in the Base Block of the Mir station, were made during the Mir-18 and -19 missions. There is a significant variation of dose rates across the core module; the six locations sampled showed a variation of a factor of nearly two. A tissue equivalent proportional counter (TEPC) measured a total absorbed dose rate of 300 microGy/day, roughly equally divided between the rate due to trapped protons from the South Atlantic Anomaly (SAA) and galactic cosmic radiation (GCR). This dose rate is about a factor of two lower than the rate measured by the thinly shielded (0.5 g cm-2 of Al) operational ion chamber (R-16), and about 3/2 of the rate of the more heavily shielded (3.5 g cm-2 of Al) ion chamber. This is due to the differences in the mass shielding properties at the location of these detectors. A comparison of integral linear energy transfer (LET) spectra measured by TEPC and plastic nuclear track detectors (PNTDs) deployed side by side are in remarkable agreement in the LET region of 15-1000 keV/micrometer, where the PNTDs are fully efficient. The average quality factor, using the ICRP-26 definition, was 2.6, which is higher than normally used. There is excellent agreement between the measured GCR dose rate and model calculations, but this is not true for trapped protons. The measured Mir-18 crew skin dose equivalent rate was 1133 microSv/day. Using the skin dose rate and anatomical models, we have estimated the blood-forming organ (BFO) dose rate and the maximum stay time in orbit for International Space Station crew members.


Advances in Space Research | 1996

Track structure and radiation transport model for space radiobiology studies

Francis A. Cucinotta; John Wilson; Robert Katz; William Atwell; G. D. Badhwar; M. R. Shavers

Abstract Radiobiology experiments performed in space are deemed necessary for validation of risk-assessment methods. The understanding of space radiobiology experiments must combine knowledge of the space radiation environment, radiation transport, and models of biological response. The heavy ion transport code HZETRN has recently been combined with improved models of the galactic cosmic rays (GCR) and extensive comparisons made to measurements on the space shuttle with a tissue equivalent, proportional counter. HZETRN was also coupled with track-structure models of biological damage from heavy ions. Track-structure calculations using improved models of the radial dose distribution around the path of heavy ions provide a good description of ground-based experiments for inactivation cross sections. Therefore, we use these models to predict inactivation of Bacillus Subtilis spores in space. Calculations consider single-particle effects, as well as the background from low linear energy transfer ions of the GCR and trapped radiations on the radial distributions of effects measured in plastic detectors.

Collaboration


Dive into the William Atwell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Wilson

Langley Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. F. Badavi

Christopher Newport University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

W. Kent Tobiska

University of Colorado Boulder

View shared research outputs
Researchain Logo
Decentralizing Knowledge