Gennaro Agrimi
University of Bari
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gennaro Agrimi.
Journal of Biological Chemistry | 2004
Simona Todisco; Gennaro Agrimi; Alessandra Castegna; Ferdinando Palmieri
The mitochondrial carriers are a family of transport proteins that shuttle metabolites, nucleotides, and cofactors across the inner mitochondrial membrane. In Saccharomyces cerevisiae, NAD+ is synthesized outside the mitochondria and must be imported across the permeability barrier of the inner mitochondrial membrane. However, no protein responsible for this transport activity has ever been isolated or identified. In this report, the identification and functional characterization of the mitochondrial NAD+ carrier protein (Ndt1p) is described. The NDT1 gene was overexpressed in bacteria. The purified protein was reconstituted into liposomes, and its transport properties and kinetic parameters were characterized. It transported NAD+ and, to a lesser extent, (d)AMP and (d)GMP but virtually not α-NAD+, NADH, NADP+, or NADPH. Transport was saturable with an apparent Km of 0.38 mm for NAD+. The Ndt1p-GFP was found to be targeted to mitochondria. Consistently with Ndt1p localization and its function as a NAD+ transporter, cells lacking NDT1 had reduced levels of NAD+ and NADH in their mitochondria and reduced activity of mitochondrial NAD+-requiring enzymes. Similar results were also found in the mitochondria of cells lacking NDT2 that encodes a protein (Ndt2p) displaying 70% homology with Ndt1p. The Δndt1 Δndt2 double mutant exhibited lower mitochondrial NAD+ and NADH levels than the single deletants and a more pronounced delay in growth on nonfermentable carbon sources. The main role of Ndt1p and Ndt2p is to import NAD+ into mitochondria by unidirectional transport or by exchange with intramitochondrially generated (d)AMP and (d)GMP.
International Journal of Pharmaceutics | 2011
Adriana Trapani; Elvira De Giglio; D. Cafagna; Nunzio Denora; Gennaro Agrimi; Tommaso Cassano; Silvana Gaetani; Vincenzo Cuomo; Giuseppe Trapani
The aim of this study was to characterize nanoparticles (NPs) composed of chitosan (CS) and evaluate their potential for brain delivery of the neurotransmitter Dopamine (DA). For this purpose, CS based NPs were incubated with DA at two different concentrations giving rise to nanocarriers denoted as DA/CSNPs (1) and DA/CSNPs (5), respectively. X-ray Photoelectron Spectroscopy (XPS) analysis confirmed that DA was adsorbed onto the external surface of such NPs. The cytotoxic effect of the CSNPs and DA/CSNPs was assessed using the MTT test and it was found that the nanovectors are less cytotoxic than the neurotransmitter DA after 3 h of incubation time. Transport studies across MDCKII-MDR1 cell line showed that DA/CSNPs (5) give rise to a significant transport enhancing effect compared with the control and greater than the corresponding DA/CSNPs (1). Measurement of reactive oxygen species (ROS) suggested a low DA/CSNPs neurotoxicity after 3 h. In vivo brain microdialysis experiments in rat showed that intraperitoneal acute administration of DA/CSNPs (5) (6-12 mg/kg) induced a dose-dependent increase in striatal DA output. Thus, these CS nanoparticles represent an interesting technological platform for DA brain delivery and, hence, may be useful for Parkinsons disease treatment.
Biochemical Journal | 2004
Gennaro Agrimi; M A Di Noia; Carlo M.T. Marobbio; Giuseppe Fiermonte; Francesco M. Lasorsa; Ferdinando Palmieri
The mitochondrial carriers are a family of transport proteins that, with a few exceptions, are found in the inner membranes of mitochondria. They shuttle metabolites and cofactors through this membrane, and connect cytoplasmic functions with others in the matrix. SAM (S-adenosylmethionine) has to be transported into the mitochondria where it is converted into S-adenosylhomocysteine in methylation reactions of DNA, RNA and proteins. The transport of SAM has been investigated in rat liver mitochondria, but no protein has ever been associated with this activity. By using information derived from the phylogenetically distant yeast mitochondrial carrier for SAM and from related human expressed sequence tags, a human cDNA sequence was completed. This sequence was overexpressed in bacteria, and its product was purified, reconstituted into phospholipid vesicles and identified from its transport properties as the human mitochondrial SAM carrier (SAMC). Unlike the yeast orthologue, SAMC catalysed virtually only countertransport, exhibited a higher transport affinity for SAM and was strongly inhibited by tannic acid and Bromocresol Purple. SAMC was found to be expressed in all human tissues examined and was localized to the mitochondria. The physiological role of SAMC is probably to exchange cytosolic SAM for mitochondrial S-adenosylhomocysteine. This is the first report describing the identification and characterization of the human SAMC and its gene.
Biochimica et Biophysica Acta | 2000
Luigi Palmieri; Francesco M. Lasorsa; Angelo Vozza; Gennaro Agrimi; Giuseppe Fiermonte; Michael J. Runswick; John E. Walker; Ferdinando Palmieri
The genome of Saccharomyces cerevisiae encodes 35 putative members of the mitochondrial carrier family. Known members of this family transport substrates and products across the inner membranes of mitochondria. We are attempting to identify the functions of the yeast mitochondrial transporters via high-yield expression in Escherichia coli and/or S. cerevisiae, purification and reconstitution of their protein products into liposomes, where their transport properties are investigated. With this strategy, we have already identified the functions of seven S. cerevisiae gene products, whose structural and functional properties assigned them to the mitochondrial carrier family. The functional information obtained in the reconstituted system and the use of knock-out yeast strains can be usefully exploited for the investigation of the physiological role of individual transporters. Furthermore, the yeast carrier sequences can be used to identify the orthologous proteins in other organisms, including man.
The EMBO Journal | 2003
Carlo M.T. Marobbio; Gennaro Agrimi; Francesco M. Lasorsa; Ferdinando Palmieri
The genome of Saccharomyces cerevisiae contains 35 members of the mitochondrial carrier protein family, most of which have not yet been functionally identified. Here the identification of the mitochondrial carrier for S‐adenosylmethionine (SAM) Sam5p is described. The corresponding gene has been overexpressed in bacteria and the protein has been reconstituted into phospholipid vesicles and identified by its transport properties. In confirmation of its identity, (i) the Sam5p–GFP protein was found to be targeted to mitochondria; (ii) the cells lacking the gene for this carrier showed auxotrophy for biotin (which is synthesized in the mitochondria by the SAM‐requiring Bio2p) on fermentable carbon sources and a petite phenotype on non‐fermentable substrates; and (iii) both phenotypes of the knock‐out mutant were overcome by expressing the cytosolic SAM synthetase (Sam1p) inside the mitochondria.
Journal of Biological Chemistry | 2010
Alessandra Castegna; Pasquale Scarcia; Gennaro Agrimi; Luigi Palmieri; Hanspeter Rottensteiner; Iolanda Spera; Lucrezia Germinario; Ferdinando Palmieri
Mitochondrial carriers are a family of transport proteins that shuttle metabolites, nucleotides, and coenzymes across the mitochondrial membrane. The function of only a few of the 35 Saccharomyces cerevisiae mitochondrial carriers still remains to be uncovered. In this study, we have functionally defined and characterized the S. cerevisiae mitochondrial carrier Yhm2p. The YHM2 gene was overexpressed in S. cerevisiae, and its product was purified and reconstituted into liposomes. Its transport properties, kinetic parameters, and targeting to mitochondria show that Yhm2p is a mitochondrial transporter for citrate and oxoglutarate. Reconstituted Yhm2p also transported oxaloacetate, succinate, and fumarate to a lesser extent, but virtually not malate and isocitrate. Yhm2p catalyzed only a counter-exchange transport that was saturable and inhibited by sulfhydryl-blocking reagents but not by 1,2,3-benzenetricarboxylate (a powerful inhibitor of the citrate/malate carrier). The physiological role of Yhm2p is to increase the NADPH reducing power in the cytosol (required for biosynthetic and antioxidant reactions) and probably to act as a key component of the citrate-oxoglutarate NADPH redox shuttle between mitochondria and cytosol. This protein function is based on observations documenting a decrease in the NADPH/NADP+ and GSH/GSSG ratios in the cytosol of ΔYHM2 cells as well as an increase in the NADPH/NADP+ ratio in their mitochondria compared with wild-type cells. Our proposal is also supported by the growth defect displayed by the ΔYHM2 strain and more so by the ΔYHM2ΔZWF1 strain upon H2O2 exposure, implying that Yhm2p has an antioxidant function.
Journal of Bioenergetics and Biomembranes | 2012
Gennaro Agrimi; Annamaria Russo; Ciro Leonardo Pierri; Ferdinando Palmieri
The peroxisomal protein PXN encoded by the Arabidopsis gene At2g39970 has very recently been found to transport NAD+, NADH, AMP and ADP. In this work we have reinvestigated the substrate specificity and the transport properties of PXN by using a wide range of potential substrates. Heterologous expression in bacteria followed by purification, reconstitution in liposomes, and uptake and efflux experiments revealed that PNX transports coenzyme A (CoA), dephospho-CoA, acetyl-CoA and adenosine 3′, 5′-phosphate (PAP), besides NAD+, NADH, AMP and ADP. PXN catalyzed fast counter-exchange of substrates and much slower uniport and was strongly inhibited by pyridoxal 5′-phosphate, bathophenanthroline and tannic acid. Transport was saturable with a submillimolar affinity for NAD+, CoA and other substrates. The physiological role of PXN is probably to provide the peroxisomes with the essential coenzymes NAD+ and CoA.
Journal of Biological Chemistry | 2014
Maria Antonietta Di Noia; Simona Todisco; Angela Cirigliano; Teresa Rinaldi; Gennaro Agrimi; Vito Iacobazzi; Ferdinando Palmieri
Background: SLC25A33 and SLC25A36 are two human uncharacterized proteins encoded by the mitochondrial carrier SLC25 genes. Results: Recombinant SLC25A33 and SLC25A36 transport cytosine, uracil, and thymine (deoxy)nucleotides with different efficiency. Conclusion: SLC25A33 and SLC25A36 are mitochondrial transporters for pyrimidine (deoxy)nucleotides. Significance: SLC25A33 and SLC25A36 are essential for mitochondrial DNA and RNA metabolism; other two members of the SLC25 superfamily responsible for 12 monogenic diseases were thoroughly characterized. The human genome encodes 53 members of the solute carrier family 25 (SLC25), also called the mitochondrial carrier family, many of which have been shown to transport inorganic anions, amino acids, carboxylates, nucleotides, and coenzymes across the inner mitochondrial membrane, thereby connecting cytosolic and matrix functions. Here two members of this family, SLC25A33 and SLC25A36, have been thoroughly characterized biochemically. These proteins were overexpressed in bacteria and reconstituted in phospholipid vesicles. Their transport properties and kinetic parameters demonstrate that SLC25A33 transports uracil, thymine, and cytosine (deoxy)nucleoside di- and triphosphates by an antiport mechanism and SLC25A36 cytosine and uracil (deoxy)nucleoside mono-, di-, and triphosphates by uniport and antiport. Both carriers also transported guanine but not adenine (deoxy)nucleotides. Transport catalyzed by both carriers was saturable and inhibited by mercurial compounds and other inhibitors of mitochondrial carriers to various degrees. In confirmation of their identity (i) SLC25A33 and SLC25A36 were found to be targeted to mitochondria and (ii) the phenotypes of Saccharomyces cerevisiae cells lacking RIM2, the gene encoding the well characterized yeast mitochondrial pyrimidine nucleotide carrier, were overcome by expressing SLC25A33 or SLC25A36 in these cells. The main physiological role of SLC25A33 and SLC25A36 is to import/export pyrimidine nucleotides into and from mitochondria, i.e. to accomplish transport steps essential for mitochondrial DNA and RNA synthesis and breakdown.
Applied and Environmental Microbiology | 2011
Gennaro Agrimi; Luca Brambilla; Gianni Frascotti; Isabella Pisano; Danilo Porro; Marina Vai; Luigi Palmieri
ABSTRACT The modification of enzyme cofactor concentrations can be used as a method for both studying and engineering metabolism. We varied Saccharomyces cerevisiae mitochondrial NAD levels by altering expression of its specific mitochondrial carriers. Changes in mitochondrial NAD levels affected the overall cellular concentration of this coenzyme and the cellular metabolism. In batch culture, a strain with a severe NAD depletion in mitochondria succeeded in growing, albeit at a low rate, on fully respiratory media. Although the strain increased the efficiency of its oxidative phosphorylation, the ATP concentration was low. Under the same growth conditions, a strain with a mitochondrial NAD concentration higher than that of the wild type similarly displayed a low cellular ATP level, but its growth rate was not affected. In chemostat cultures, when cellular metabolism was fully respiratory, both mutants showed low biomass yields, indicative of impaired energetic efficiency. The two mutants increased their glycolytic fluxes, and as a consequence, the Crabtree effect was triggered at lower dilution rates. Strikingly, the mutants switched from a fully respiratory metabolism to a respirofermentative one at the same specific glucose flux as that of the wild type. This result seems to indicate that the specific glucose uptake rate and/or glycolytic flux should be considered one of the most important independent variables for establishing the long-term Crabtree effect. In cells growing under oxidative conditions, bioenergetic efficiency was affected by both low and high mitochondrial NAD availability, which suggests the existence of a critical mitochondrial NAD concentration in order to achieve optimal mitochondrial functionality.
Journal of Biological Chemistry | 2015
Magali R. VanLinden; Christian Dölle; Ina Katrine Nitschke Pettersen; Veronika Kulikova; Marc Niere; Gennaro Agrimi; Sissel E. Dyrstad; Ferdinando Palmieri; Andrey Nikiforov; Karl Johan Tronstad; Mathias Ziegler
Background: Maintaining the mitochondrial NAD+ pool is important, whereas its generation in mammalian cells is not understood. Results: A plant transporter expressed in human cells increases mitochondrial NAD+ but shifts metabolism from respiration to glycolysis. Conclusion: In human cells, NAD+ is synthesized in mitochondria rather than imported from the cytosol. Significance: Separation of subcellular NAD+ pools may be critical for metabolism in mammalian cells. The mitochondrial NAD pool is particularly important for the maintenance of vital cellular functions. Although at least in some fungi and plants, mitochondrial NAD is imported from the cytosol by carrier proteins, in mammals, the mechanism of how this organellar pool is generated has remained obscure. A transporter mediating NAD import into mammalian mitochondria has not been identified. In contrast, human recombinant NMNAT3 localizes to the mitochondrial matrix and is able to catalyze NAD+ biosynthesis in vitro. However, whether the endogenous NMNAT3 protein is functionally effective at generating NAD+ in mitochondria of intact human cells still remains to be demonstrated. To modulate mitochondrial NAD+ content, we have expressed plant and yeast mitochondrial NAD+ carriers in human cells and observed a profound increase in mitochondrial NAD+. None of the closest human homologs of these carriers had any detectable effect on mitochondrial NAD+ content. Surprisingly, constitutive redistribution of NAD+ from the cytosol to the mitochondria by stable expression of the Arabidopsis thaliana mitochondrial NAD+ transporter NDT2 in HEK293 cells resulted in dramatic growth retardation and a metabolic shift from oxidative phosphorylation to glycolysis, despite the elevated mitochondrial NAD+ levels. These results suggest that a mitochondrial NAD+ transporter, similar to the known one from A. thaliana, is likely absent and could even be harmful in human cells. We provide further support for the alternative possibility, namely intramitochondrial NAD+ synthesis, by demonstrating the presence of endogenous NMNAT3 in the mitochondria of human cells.