Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where George Haret-Richter is active.

Publication


Featured researches published by George Haret-Richter.


Journal of Clinical Investigation | 2014

Early microbial translocation blockade reduces SIV-mediated inflammation and viral replication

Jan Kristoff; George Haret-Richter; Dongzhu Ma; Ruy M. Ribeiro; Cuiling Xu; Elaine Cornell; Jennifer L. Stock; Tianyu He; Adam D. Mobley; Samantha Ross; Anita Trichel; Cara C. Wilson; Russell P. Tracy; Alan Landay; Cristian Apetrei; Ivona Pandrea

Damage to the intestinal mucosa results in the translocation of microbes from the intestinal lumen into the circulation. Microbial translocation has been proposed to trigger immune activation, inflammation, and coagulopathy, all of which are key factors that drive HIV disease progression and non-HIV comorbidities; however, direct proof of a causal link is still lacking. Here, we have demonstrated that treatment of acutely SIV-infected pigtailed macaques with the drug sevelamer, which binds microbial lipopolysaccharide in the gut, dramatically reduces immune activation and inflammation and slightly reduces viral replication. Furthermore, sevelamer administration reduced coagulation biomarkers, confirming the contribution of microbial translocation in the development of cardiovascular comorbidities in SIV-infected nonhuman primates. Together, our data suggest that early control of microbial translocation may improve the outcome of HIV infection and limit noninfectious comorbidities associated with AIDS.


Blood | 2012

Coagulation biomarkers predict disease progression in SIV-infected nonhuman primates.

Ivona Pandrea; Elaine Cornell; Cara C. Wilson; Ruy M. Ribeiro; Dongzhu Ma; Jan Kristoff; Cuiling Xu; George Haret-Richter; Anita Trichel; Cristian Apetrei; Alan Landay; Russell P. Tracy

HIV infection is associated with increased risk of cardiovascular complications, the underlying mechanism of which remains unclear. Plasma levels of the coagulation biomarker D-dimer (DD) correlate with increased mortality and cardiovascular events in HIV-infected patients. We compared the incidence of cardiovascular lesions and the levels of the coagulation markers DD and thrombin antithrombin in pathogenic SIV infections of rhesus and pigtailed macaques (PTMs) and in nonpathogenic SIV infection of African green monkeys (AGMs) and sooty mangabeys. Hypercoagulability and cardiovascular pathology were only observed in pathogenic SIV infections. In PTMs infected with SIV from AGMs (SIVagm), DD levels were highly indicative of AIDS progression and increased mortality and were associated with cardiovascular lesions, pointing to SIVagm-infected PTMs as an ideal animal model for the study of HIV-associated cardiovascular disease. In pathogenic SIV infection, DD increased early after infection, was strongly correlated with markers of immune activation/inflammation and microbial translocation (MT), and was only peripherally associated with viral loads. Endotoxin administration to SIVagm-infected AGMs (which lack chronic SIV-induced MT and immune activation) resulted in significant increases of DD. Our results demonstrate that hypercoagulation and cardiovascular pathology are at least in part a consequence of excessive immune activation and MT in SIV infection.


Journal of Virology | 2012

Mucosal Simian Immunodeficiency Virus Transmission in African Green Monkeys: Susceptibility to Infection Is Proportional to Target Cell Availability at Mucosal Sites

Ivona Pandrea; Nicholas F. Parrish; Kevin Raehtz; Thaidra Gaufin; Hannah J. Barbian; Dongzhu Ma; Jan Kristoff; Rajeev Gautam; Fang Zhong; George Haret-Richter; Anita Trichel; George M. Shaw; Beatrice H. Hahn; Cristian Apetrei

ABSTRACT African green monkeys (AGMs) are naturally infected with a simian immunodeficiency virus (SIVagm) that is nonpathogenic in its host. Although SIVagm is common and widespread, little is known about the mechanisms that govern its transmission. Since the earliest virus-host interactions may provide key insights into the nonpathogenic phenotype of SIVagm, we developed a mucosal transmission model for this virus. Using plasma from an acutely infected AGM as the virus inoculum, we exposed adult and juvenile AGMs, as well as pigtailed macaques (PTMs) as a nonnatural host control, by mucosal routes to increasing titers of virus and compared the doses needed to establish a productive infection. Four juvenile and four adult AGMs as well as two PTMs were intrarectally (IR) exposed, while two additional adult female AGMs were intravaginally (IVAG) exposed. No animal became infected following exposure to 105 RNA copies. Both PTMs but none of the AGMs became infected following exposure to 106 RNA copies. Finally, all adult AGMs and two of the four juvenile AGMs became infected following exposure to 107 RNA copies, acquiring either one (2 IR infected juveniles, 1 IR infected adult, 2 IVAG infected adults) or two (3 IR infected adults) transmitted founder viruses. These results were consistent with immunophenotypic data, which revealed a significant correlation between the percentage of CD4+ T cells expressing CCR5 in the mucosa and the susceptibility to infection, in terms of both the viral dose and the numbers of transmitted founder viruses. Moreover, studies of uninfected AGMs showed that the fraction of CCR5-expressing CD4+ T cells increased significantly with age. These results indicate that (i) AGMs are readily infected with SIVagm by both intrarectal and intravaginal routes, (ii) susceptibility to infection is proportional to the number of available CCR5+ CD4+ target cells in the mucosa, and (iii) the paucity of CCR5+ CD4+ target cells in infant and juvenile AGMs may explain the near absence of vertical transmission.


PLOS Pathogens | 2013

Kinetics of myeloid dendritic cell trafficking and activation: impact on progressive, nonprogressive and controlled SIV infections.

Viskam Wijewardana; Jan Kristoff; Cuiling Xu; Dongzhu Ma; George Haret-Richter; Jennifer L. Stock; Benjamin B. Policicchio; Adam D. Mobley; Rebecca Nusbaum; Hadega Aamer; Anita Trichel; Ruy M. Ribeiro; Cristian Apetrei; Ivona Pandrea

We assessed the role of myeloid dendritic cells (mDCs) in the outcome of SIV infection by comparing and contrasting their frequency, mobilization, phenotype, cytokine production and apoptosis in pathogenic (pigtailed macaques, PTMs), nonpathogenic (African green monkeys, AGMs) and controlled (rhesus macaques, RMs) SIVagmSab infection. Through the identification of recently replicating cells, we demonstrated that mDC mobilization from the bone marrow occurred in all species postinfection, being most prominent in RMs. Circulating mDCs were depleted with disease progression in PTMs, recovered to baseline values after the viral peak in AGMs, and significantly increased at the time of virus control in RMs. Rapid disease progression in PTMs was associated with low baseline levels and incomplete recovery of circulating mDCs during chronic infection. mDC recruitment to the intestine occurred in all pathogenic scenarios, but loss of mucosal mDCs was associated only with progressive infection. Sustained mDC immune activation occurred throughout infection in PTMs and was associated with increased bystander apoptosis in blood and intestine. Conversely, mDC activation occurred only during acute infection in nonprogressive and controlled infections. Postinfection, circulating mDCs rapidly became unresponsive to TLR7/8 stimulation in all species. Yet, stimulation with LPS, a bacterial product translocated in circulation only in SIV-infected PTMs, induced mDC hyperactivation, apoptosis and excessive production of proinflammatory cytokines. After infection, spontaneous production of proinflammatory cytokines by mucosal mDCs increased only in progressor PTMs. We thus propose that mDCs promote tolerance to SIV in the biological systems that lack intestinal dysfunction. In progressive infections, mDC loss and excessive activation of residual mDCs by SIV and additional stimuli, such as translocated microbial products, enhance generalized immune activation and inflammation. Our results thus provide a mechanistic basis for the role of mDCs in the pathogenesis of AIDS and elucidate the causes of mDC loss during progressive HIV/SIV infections.


Journal of Virology | 2014

Pathogenic Features Associated with Increased Virulence upon Simian Immunodeficiency Virus Cross-Species Transmission from Natural Hosts

Daniel T. Mandell; Jan Kristoff; Thaidra Gaufin; Rajeev Gautam; Dongzhu Ma; Netanya G. Sandler; George Haret-Richter; Cuiling Xu; Hadega Aamer; Jason Dufour; Anita Trichel; Brandon F. Keele; Cristian Apetrei; Ivona Pandrea

ABSTRACT While simian immunodeficiency viruses (SIVs) are generally nonpathogenic in their natural hosts, dramatic increases in pathogenicity may occur upon cross-species transmission to new hosts. Deciphering the drivers of these increases in virulence is of major interest for understanding the emergence of new human immunodeficiency viruses (HIVs). We transmitted SIVsab from the sabaeus species of African green monkeys (AGMs) to pigtailed macaques (PTMs). High acute viral replication occurred in all SIVsab-infected PTMs, yet the outcome of chronic infection was highly variable, ranging from rapid progression to controlled infection, which was independent of the dynamics of acute viral replication, CD4+ T cell depletion, or preinfection levels of microbial translocation. Infection of seven PTMs with plasma collected at necropsy from a rapid-progressor PTM was consistently highly pathogenic, with high acute and chronic viral replication, massive depletion of memory CD4+ T cells, and disease progression in all PTMs. The plasma inoculum used for the serial passage did not contain adventitious bacterial or viral contaminants. Single-genome amplification showed that this inoculum was significantly more homogenous than the inoculum directly derived from AGMs, pointing to a strain selection in PTMs. In spite of similar peak plasma viral loads between the monkeys in the two passages, immune activation/inflammation levels dramatically increased in PTMs infected with the passaged virus. These results suggest that strain selection and a massive cytokine storm are major factors behind increased pathogenicity of SIV upon serial passage and adaptation of SIVs to new hosts following cross-species transmission. IMPORTANCE We report here that upon cross-species transmission and serial passage of SIVsab from its natural host, the sabaeus African green monkey (AGM), to a new host, the pigtailed macaque (PTM), viral adaptation and increased pathogenicity involve strain selection and a massive cytokine storm. These results permit the design of strategies aimed at preventing cross-species transmission from natural hosts of SIVs to humans in areas of endemicity. Furthermore, our study describes a new animal model for SIV infection. As the outcomes of SIVsab infection in PTMs, African green monkeys, and rhesus macaques are different, the use of these systems enables comparative studies between pathogenic, nonpathogenic, and elite-controlled infections, to gain insight into the mechanisms of SIV immunodeficiency and comorbidities.


PLOS Pathogens | 2016

Antibiotic and Antiinflammatory Therapy Transiently Reduces Inflammation and Hypercoagulation in Acutely SIV-Infected Pigtailed Macaques

Ivona Pandrea; Cuiling Xu; Jennifer L. Stock; Daniel N. Frank; Dongzhu Ma; Benjamin B. Policicchio; Tianyu He; Jan Kristoff; Elaine Cornell; George Haret-Richter; Anita Trichel; Ruy M. Ribeiro; Russell P. Tracy; Cara C. Wilson; Alan Landay; Cristian Apetrei

Increased chronic immune activation and inflammation are hallmarks of HIV/SIV infection and are highly correlated with progression to AIDS and development of non-AIDS comorbidities, such as hypercoagulability and cardiovascular disease. Intestinal dysfunction resulting in microbial translocation has been proposed as a lead cause of systemic immune activation and hypercoagulability in HIV/SIV infection. Our goal was to assess the biological and clinical impact of a therapeutic strategy designed to reduce microbial translocation through reduction of the microbial content of the intestine (Rifaximin-RFX) and of gut inflammation (Sulfasalazine-SFZ). RFX is an intraluminal antibiotic that was successfully used in patients with hepatic encephalopathy. SFZ is an antiinflammatory drug successfully used in patients with mild to moderate inflammatory bowel disease. Both these clinical conditions are associated with increased microbial translocation, similar to HIV-infected patients. Treatment was administered for 90 days to five acutely SIV-infected pigtailed macaques (PTMs) starting at the time of infection; seven untreated SIVsab-infected PTMs were used as controls. RFX+SFZ were also administered for 90 days to three chronically SIVsab-infected PTMs. RFX+SFZ administration during acute SIVsab infection of PTMs resulted in: significantly lower microbial translocation, lower systemic immune activation, lower viral replication, better preservation of mucosal CD4+ T cells and significantly lower levels of hypercoagulation biomarkers. This effect was clear during the first 40 days of treatment and was lost during the last stages of treatment. Administration of RFX+SFZ to chronically SIVsab–infected PTMs had no discernible effect on infection. Our data thus indicate that early RFX+SFZ administration transiently improves the natural history of acute and postacute SIV infection, but has no effect during chronic infection.


PLOS Pathogens | 2016

Multi-dose Romidepsin Reactivates Replication Competent SIV in Post-antiretroviral Rhesus Macaque Controllers

Benjamin B. Policicchio; Cuiling Xu; Egidio Brocca-Cofano; Kevin Raehtz; Tianyu He; Dongzhu Ma; Hui Li; Ranjit Sivanandham; George Haret-Richter; Tammy Dunsmore; Anita Trichel; John W. Mellors; Beatrice H. Hahn; George M. Shaw; Ruy M. Ribeiro; Ivona Pandrea; Cristian Apetrei

Viruses that persist despite seemingly effective antiretroviral treatment (ART) and can reinitiate infection if treatment is stopped preclude definitive treatment of HIV-1 infected individuals, requiring lifelong ART. Among strategies proposed for targeting these viral reservoirs, the premise of the “shock and kill” strategy is to induce expression of latent proviruses [for example with histone deacetylase inhibitors (HDACis)] resulting in elimination of the affected cells through viral cytolysis or immune clearance mechanisms. Yet, ex vivo studies reported that HDACis have variable efficacy for reactivating latent proviruses, and hinder immune functions. We developed a nonhuman primate model of post-treatment control of SIV through early and prolonged administration of ART and performed in vivo reactivation experiments in controller RMs, evaluating the ability of the HDACi romidepsin (RMD) to reactivate SIV and the impact of RMD treatment on SIV-specific T cell responses. Ten RMs were IV-infected with a SIVsmmFTq transmitted-founder infectious molecular clone. Four RMs received conventional ART for >9 months, starting from 65 days post-infection. SIVsmmFTq plasma viremia was robustly controlled to <10 SIV RNA copies/mL with ART, without viral blips. At ART cessation, initial rebound viremia to ~106 copies/mL was followed by a decline to < 10 copies/mL, suggesting effective immune control. Three post-treatment controller RMs received three doses of RMD every 35–50 days, followed by in vivo experimental depletion of CD8+ cells using monoclonal antibody M-T807R1. RMD was well-tolerated and resulted in a rapid and massive surge in T cell activation, as well as significant virus rebounds (~104 copies/ml) peaking at 5–12 days post-treatment. CD8+ cell depletion resulted in a more robust viral rebound (107 copies/ml) that was controlled upon CD8+ T cell recovery. Our results show that RMD can reactivate SIV in vivo in the setting of post-ART viral control. Comparison of the patterns of virus rebound after RMD administration and CD8+ cell depletion suggested that RMD impact on T cells is only transient and does not irreversibly alter the ability of SIV-specific T cells to control the reactivated virus.


Journal of Virology | 2015

Simian Immunodeficiency Virus SIVsab Infection of Rhesus Macaques as a Model of Complete Immunological Suppression with Persistent Reservoirs of Replication-Competent Virus: Implications for Cure Research

Dongzhu Ma; Cuiling Xu; Anthony R. Cillo; Benjamin B. Policicchio; Jan Kristoff; George Haret-Richter; John W. Mellors; Ivona Pandrea; Cristian Apetrei

ABSTRACT Simian immunodeficiency virus SIVsab infection is completely controlled in rhesus macaques (RMs) through functional immune responses. We report that in SIVsab-infected RMs, (i) viral replication is controlled to <0 to 3 copies/ml, (ii) about one-third of the virus strains in reservoirs are replication incompetent, and (iii) rebounding virus after CD8+ cell depletion is replication competent and genetically similar to the original virus stock, suggesting early reservoir seeding. This model permits assessment of strategies aimed at depleting the reservoir without multidrug antiretroviral therapy.


PLOS ONE | 2018

Emergence of resistance mutations in simian immunodeficiency virus (SIV)-infected rhesus macaques receiving non-suppressive antiretroviral therapy (ART)

Benjamin B. Policicchio; Paola Sette; Cuiling Xu; George Haret-Richter; Tammy Dunsmore; Ivona Pandrea; Ruy M. Ribeiro; Cristian Apetrei

Two SIVmac251-infected rhesus macaques received tenofovir/emtricitabine with raltegravir intensification. Viral rebound occurred during treatment and sequencing of reverse transcriptase and integrase genes identified multiple resistance mutations. Similar to HIV infection, antiretroviral-resistance mutations may occur in SIV-infected nonhuman primates receiving nonsuppressive ART. As ART administration to nonhuman primates is currently dramatically expanding, fueled by both cure research and the study of HIV-related comorbidities, viral resistance should be factored in the study design and data interpretation.


Journal of Virology | 2018

The dynamics of SIV 2-LTR Circles in the Presence and Absence of CD8+ Cells

Benjamin B. Policicchio; Erwing Fabian Cardozo; Paola Sette; Cuiling Xu; George Haret-Richter; Tammy Dunsmore; Cristian Apetrei; Ivona Pandrea; Ruy M. Ribeiro

ABSTRACT CD8+ cells play a key role in human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) infection, but their specific mechanism(s) of action in controlling the virus is unclear. Two-long-terminal-repeat (2-LTR) circles are extrachromosomal products generated upon failed integration of HIV/SIV. To understand the specific effects of CD8+ cells on infected cells, we analyzed the dynamics of 2-LTR circles in SIVmac251-infected rhesus macaques (RMs) treated with an integrase inhibitor (INT). Twenty RMs underwent CD8+ cell depletion and received raltegravir (RAL) monotherapy or a combination of both. Blood, lymph nodes (LNs), and gut biopsy specimens were routinely sampled. Plasma viral loads (pVLs) and 2-LTR circles from peripheral blood mononuclear cells (PBMCs) and LN lymphocytes were measured with quantitative reverse transcription-PCR (qRT-PCR). In the CD8 depletion group, an ∼1-log increase in pVLs and a slow increase in PBMC 2-LTRs occurred following depletion. In the INT group, a strong decline in pVLs upon treatment initiation and no change in 2-LTR levels were observed. In the INT and CD8+ cell depletion group, an increase in pVLs following CD8 depletion similar to that in the CD8 depletion group was observed, with a modest decline following INT initiation, and 2-LTR circles significantly increased in PBMCs and LNs. Analyzing the 2-LTR data across all treatment groups with a mathematical model indicates that the data best support an effect of CD8+ cells in killing cells prior to viral integration. Sensitivity analyses of these results confirm that effect but also allow for additional effects, which the data do not discriminate well. Overall, we show that INT does not significantly increase the levels of 2-LTR circles. However, CD8+ cell depletion increases the 2-LTR levels, which are enhanced in the presence of an INT. IMPORTANCE CD8+ T cells play an essential role in controlling HIV and SIV infection, but the specific mechanisms involved remain poorly understood. Due to failed viral infection, HIV and SIV can form 2-LTR extrachromosomal circles that can be quantified. We present novel data on the dynamics of these 2-LTR forms in a SIV-infected macaque model under three different treatment conditions: depletion of CD8+ cells, administration of the integrase inhibitor in a monotherapy, which favors the formation of 2-LTR circles, and a combination of the two treatments. We used a new mathematical model to help interpret the data, and the results suggest that CD8+ cells exert a killing effect on infected cells prior to virus integration. These results provide new insights into the mechanisms of action of CD8+ cells in SIV infection. Confirmation of our results would be an important step in understanding immune control of HIV.

Collaboration


Dive into the George Haret-Richter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivona Pandrea

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Cuiling Xu

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Dongzhu Ma

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Jan Kristoff

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ruy M. Ribeiro

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Anita Trichel

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Alan Landay

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Tammy Dunsmore

University of Pittsburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge