Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin B. Policicchio is active.

Publication


Featured researches published by Benjamin B. Policicchio.


Frontiers in Immunology | 2016

Animal Models for HIV Cure Research

Benjamin B. Policicchio; Ivona Pandrea; Cristian Apetrei

The HIV-1/AIDS pandemic continues to spread unabated worldwide, and no vaccine exists within our grasp. Effective antiretroviral therapy (ART) has been developed, but ART cannot clear the virus from the infected patient. A cure for HIV-1 is badly needed to stop both the spread of the virus in human populations and disease progression in infected individuals. A safe and effective cure strategy for human immunodeficiency virus (HIV) infection will require multiple tools, and appropriate animal models are tools that are central to cure research. An ideal animal model should recapitulate the essential aspects of HIV pathogenesis and associated immune responses, while permitting invasive studies, thus allowing a thorough evaluation of strategies aimed at reducing the size of the reservoir (functional cure) or eliminating the reservoir altogether (sterilizing cure). Since there is no perfect animal model for cure research, multiple models have been tailored and tested to address specific quintessential questions of virus persistence and eradication. The development of new non-human primate and mouse models, along with a certain interest in the feline model, has the potential to fuel cure research. In this review, we highlight the major animal models currently utilized for cure research and the contributions of each model to this goal.


PLOS Pathogens | 2013

Kinetics of myeloid dendritic cell trafficking and activation: impact on progressive, nonprogressive and controlled SIV infections.

Viskam Wijewardana; Jan Kristoff; Cuiling Xu; Dongzhu Ma; George Haret-Richter; Jennifer L. Stock; Benjamin B. Policicchio; Adam D. Mobley; Rebecca Nusbaum; Hadega Aamer; Anita Trichel; Ruy M. Ribeiro; Cristian Apetrei; Ivona Pandrea

We assessed the role of myeloid dendritic cells (mDCs) in the outcome of SIV infection by comparing and contrasting their frequency, mobilization, phenotype, cytokine production and apoptosis in pathogenic (pigtailed macaques, PTMs), nonpathogenic (African green monkeys, AGMs) and controlled (rhesus macaques, RMs) SIVagmSab infection. Through the identification of recently replicating cells, we demonstrated that mDC mobilization from the bone marrow occurred in all species postinfection, being most prominent in RMs. Circulating mDCs were depleted with disease progression in PTMs, recovered to baseline values after the viral peak in AGMs, and significantly increased at the time of virus control in RMs. Rapid disease progression in PTMs was associated with low baseline levels and incomplete recovery of circulating mDCs during chronic infection. mDC recruitment to the intestine occurred in all pathogenic scenarios, but loss of mucosal mDCs was associated only with progressive infection. Sustained mDC immune activation occurred throughout infection in PTMs and was associated with increased bystander apoptosis in blood and intestine. Conversely, mDC activation occurred only during acute infection in nonprogressive and controlled infections. Postinfection, circulating mDCs rapidly became unresponsive to TLR7/8 stimulation in all species. Yet, stimulation with LPS, a bacterial product translocated in circulation only in SIV-infected PTMs, induced mDC hyperactivation, apoptosis and excessive production of proinflammatory cytokines. After infection, spontaneous production of proinflammatory cytokines by mucosal mDCs increased only in progressor PTMs. We thus propose that mDCs promote tolerance to SIV in the biological systems that lack intestinal dysfunction. In progressive infections, mDC loss and excessive activation of residual mDCs by SIV and additional stimuli, such as translocated microbial products, enhance generalized immune activation and inflammation. Our results thus provide a mechanistic basis for the role of mDCs in the pathogenesis of AIDS and elucidate the causes of mDC loss during progressive HIV/SIV infections.


PLOS Pathogens | 2016

Antibiotic and Antiinflammatory Therapy Transiently Reduces Inflammation and Hypercoagulation in Acutely SIV-Infected Pigtailed Macaques

Ivona Pandrea; Cuiling Xu; Jennifer L. Stock; Daniel N. Frank; Dongzhu Ma; Benjamin B. Policicchio; Tianyu He; Jan Kristoff; Elaine Cornell; George Haret-Richter; Anita Trichel; Ruy M. Ribeiro; Russell P. Tracy; Cara C. Wilson; Alan Landay; Cristian Apetrei

Increased chronic immune activation and inflammation are hallmarks of HIV/SIV infection and are highly correlated with progression to AIDS and development of non-AIDS comorbidities, such as hypercoagulability and cardiovascular disease. Intestinal dysfunction resulting in microbial translocation has been proposed as a lead cause of systemic immune activation and hypercoagulability in HIV/SIV infection. Our goal was to assess the biological and clinical impact of a therapeutic strategy designed to reduce microbial translocation through reduction of the microbial content of the intestine (Rifaximin-RFX) and of gut inflammation (Sulfasalazine-SFZ). RFX is an intraluminal antibiotic that was successfully used in patients with hepatic encephalopathy. SFZ is an antiinflammatory drug successfully used in patients with mild to moderate inflammatory bowel disease. Both these clinical conditions are associated with increased microbial translocation, similar to HIV-infected patients. Treatment was administered for 90 days to five acutely SIV-infected pigtailed macaques (PTMs) starting at the time of infection; seven untreated SIVsab-infected PTMs were used as controls. RFX+SFZ were also administered for 90 days to three chronically SIVsab-infected PTMs. RFX+SFZ administration during acute SIVsab infection of PTMs resulted in: significantly lower microbial translocation, lower systemic immune activation, lower viral replication, better preservation of mucosal CD4+ T cells and significantly lower levels of hypercoagulation biomarkers. This effect was clear during the first 40 days of treatment and was lost during the last stages of treatment. Administration of RFX+SFZ to chronically SIVsab–infected PTMs had no discernible effect on infection. Our data thus indicate that early RFX+SFZ administration transiently improves the natural history of acute and postacute SIV infection, but has no effect during chronic infection.


PLOS Pathogens | 2016

Multi-dose Romidepsin Reactivates Replication Competent SIV in Post-antiretroviral Rhesus Macaque Controllers

Benjamin B. Policicchio; Cuiling Xu; Egidio Brocca-Cofano; Kevin Raehtz; Tianyu He; Dongzhu Ma; Hui Li; Ranjit Sivanandham; George Haret-Richter; Tammy Dunsmore; Anita Trichel; John W. Mellors; Beatrice H. Hahn; George M. Shaw; Ruy M. Ribeiro; Ivona Pandrea; Cristian Apetrei

Viruses that persist despite seemingly effective antiretroviral treatment (ART) and can reinitiate infection if treatment is stopped preclude definitive treatment of HIV-1 infected individuals, requiring lifelong ART. Among strategies proposed for targeting these viral reservoirs, the premise of the “shock and kill” strategy is to induce expression of latent proviruses [for example with histone deacetylase inhibitors (HDACis)] resulting in elimination of the affected cells through viral cytolysis or immune clearance mechanisms. Yet, ex vivo studies reported that HDACis have variable efficacy for reactivating latent proviruses, and hinder immune functions. We developed a nonhuman primate model of post-treatment control of SIV through early and prolonged administration of ART and performed in vivo reactivation experiments in controller RMs, evaluating the ability of the HDACi romidepsin (RMD) to reactivate SIV and the impact of RMD treatment on SIV-specific T cell responses. Ten RMs were IV-infected with a SIVsmmFTq transmitted-founder infectious molecular clone. Four RMs received conventional ART for >9 months, starting from 65 days post-infection. SIVsmmFTq plasma viremia was robustly controlled to <10 SIV RNA copies/mL with ART, without viral blips. At ART cessation, initial rebound viremia to ~106 copies/mL was followed by a decline to < 10 copies/mL, suggesting effective immune control. Three post-treatment controller RMs received three doses of RMD every 35–50 days, followed by in vivo experimental depletion of CD8+ cells using monoclonal antibody M-T807R1. RMD was well-tolerated and resulted in a rapid and massive surge in T cell activation, as well as significant virus rebounds (~104 copies/ml) peaking at 5–12 days post-treatment. CD8+ cell depletion resulted in a more robust viral rebound (107 copies/ml) that was controlled upon CD8+ T cell recovery. Our results show that RMD can reactivate SIV in vivo in the setting of post-ART viral control. Comparison of the patterns of virus rebound after RMD administration and CD8+ cell depletion suggested that RMD impact on T cells is only transient and does not irreversibly alter the ability of SIV-specific T cells to control the reactivated virus.


Journal of Immunology | 2016

Cutting Edge: T Regulatory Cell Depletion Reactivates Latent Simian Immunodeficiency Virus (SIV) in Controller Macaques While Boosting SIV-Specific T Lymphocytes

Tianyu He; Egidio Brocca-Cofano; Benjamin B. Policicchio; Ranjit Sivanandham; Rajeev Gautam; Kevin Raehtz; Cuiling Xu; Ivona Pandrea; Cristian Apetrei

T regulatory cells (Tregs) are critical in shaping the latent HIV/SIV reservoir, as they are preferentially infected, reverse CD4+ T cell activation status, and suppress CTL responses. To reactivate latent virus and boost cell-mediated immune responses, we performed in vivo Treg depletion with Ontak (denileukin diftitox) in two SIVsab-infected controller macaques. Ontak induced significant (>75%) Treg depletion and major CD4+ T cell activation, and only minimally depleted CD8+ T cells. The overall ability of Tregs to control immune responses was significantly impaired despite their incomplete depletion, resulting in both reactivation of latent virus (virus rebound to 103 viral RNA copies/ml plasma in the absence of antiretroviral therapy) and a significant boost of SIV-specific CD8+ T cell frequency, with rapid clearance of reactivated virus. As none of the latency-reversing agents in development have such dual activity, our strategy holds great promise for cure research.


Science Translational Medicine | 2017

Inflammatory monocytes expressing tissue factor drive SIV and HIV coagulopathy

Melissa E. Schechter; Bruno B. Andrade; Tianyu He; George Haret Richter; Kevin W. Tosh; Benjamin B. Policicchio; Amrit Singh; Kevin Raehtz; Virginia Sheikh; Dongying Ma; Egidio Brocca-Cofano; Cristian Apetrei; Russel Tracy; Ruy M. Ribeiro; Alan Sher; Ivo M. B. Francischetti; Ivona Pandrea; Irini Sereti

Activated monocytes in blood promote chronic inflammation and persistent coagulation in HIV-infected patients and SIV-infected macaques. Curbing complications in chronic HIV HIV-infected patients who have viral suppression due to treatment are still at enhanced risk of comorbidities such as neurological or cardiovascular complications, so Schechter et al. explored how inflammation and coagulation intersect in chronic HIV. To do so, they examined monocytes that express tissue factor in samples from patients or macaques infected with SIV. These monocytes appear to be crucial to coagulopathy. Treatment with a compound isolated from tick saliva, Ixolaris, can interrupt this damaging pathway. It is possible in the future that HIV patients would be treated with Ixolaris to stem some of the side effects of chronic infection. In HIV infection, persistent inflammation despite effective antiretroviral therapy is linked to increased risk of noninfectious chronic complications such as cardiovascular and thromboembolic disease. A better understanding of inflammatory and coagulation pathways in HIV infection is needed to optimize clinical care. Markers of monocyte activation and coagulation independently predict morbidity and mortality associated with non-AIDS events. We identified a specific subset of monocytes that express tissue factor (TF), persist after virological suppression, and trigger the coagulation cascade by activating factor X. This subset of monocytes expressing TF had a distinct gene signature with up-regulated innate immune markers and evidence of robust production of multiple proinflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor–α (TNF-α), and IL-6, ex vivo and in vitro upon lipopolysaccharide stimulation. We validated our findings in a nonhuman primate model, showing that TF-expressing inflammatory monocytes were associated with simian immunodeficiency virus (SIV)–related coagulopathy in the progressive [pigtail macaques (PTMs)] but not in the nonpathogenic (African green monkeys) SIV infection model. Last, Ixolaris, an anticoagulant that inhibits the TF pathway, was tested and potently blocked functional TF activity in vitro in HIV and SIV infection without affecting monocyte responses to Toll-like receptor stimulation. Strikingly, in vivo treatment of SIV-infected PTMs with Ixolaris was associated with significant decreases in D-dimer and immune activation. These data suggest that TF-expressing monocytes are at the epicenter of inflammation and coagulation in chronic HIV and SIV infection and may represent a potential therapeutic target.


Journal of Virology | 2015

Simian Immunodeficiency Virus SIVsab Infection of Rhesus Macaques as a Model of Complete Immunological Suppression with Persistent Reservoirs of Replication-Competent Virus: Implications for Cure Research

Dongzhu Ma; Cuiling Xu; Anthony R. Cillo; Benjamin B. Policicchio; Jan Kristoff; George Haret-Richter; John W. Mellors; Ivona Pandrea; Cristian Apetrei

ABSTRACT Simian immunodeficiency virus SIVsab infection is completely controlled in rhesus macaques (RMs) through functional immune responses. We report that in SIVsab-infected RMs, (i) viral replication is controlled to <0 to 3 copies/ml, (ii) about one-third of the virus strains in reservoirs are replication incompetent, and (iii) rebounding virus after CD8+ cell depletion is replication competent and genetically similar to the original virus stock, suggesting early reservoir seeding. This model permits assessment of strategies aimed at depleting the reservoir without multidrug antiretroviral therapy.


Journal of Virology | 2015

Critical Role for the Adenosine Pathway in Controlling Simian Immunodeficiency Virus-Related Immune Activation and Inflammation in Gut Mucosal Tissues

Tianyu He; Egidio Brocca-Cofano; Delbert G. Gillespie; Cuiling Xu; Jennifer L. Stock; Dongzhu Ma; Benjamin B. Policicchio; Kevin Raehtz; Charles R. Rinaldo; Cristian Apetrei; Edwin K. Jackson; Bernard Macatangay; Ivona Pandrea

ABSTRACT The role of the adenosine (ADO) pathway in human immunodeficiency virus type 1/simian immunodeficiency virus (HIV-1/SIV) infection remains unclear. We compared SIVsab-induced changes of markers related to ADO production (CD39 and CD73) and breakdown (CD26 and adenosine deaminase) on T cells from blood, lymph nodes, and intestine collected from pigtailed macaques (PTMs) and African green monkeys (AGMs) that experience different SIVsab infection outcomes. We also measured ADO and inosine (INO) levels in tissues by mass spectrometry. Finally, we assessed the suppressive effect of ADO on proinflammatory cytokine production after T cell receptor stimulation. The baseline level of both CD39 and CD73 coexpression on regulatory T cells and ADO levels were higher in AGMs than in PTMs. Conversely, high INO levels associated with dramatic increases in CD26 expression and adenosine deaminase activity were observed in PTMs during chronic SIV infection. Immune activation and inflammation markers in the gut and periphery inversely correlated with ADO and directly correlated with INO. Ex vivo administration of ADO significantly suppressed proinflammatory cytokine production by T cells in both species. In conclusion, the opposite dynamics of ADO pathway-related markers and contrasting ADO/INO levels in species with divergent proinflammatory responses to SIV infection support a key role of ADO in controlling immune activation/inflammation in nonprogressive SIV infections. Changes in ADO levels predominately occurred in the gut, suggesting that the ADO pathway may be involved in sparing natural hosts of SIVs from developing SIV-related gut dysfunction. Focusing studies of the ADO pathway on mucosal sites of viral replication is warranted. IMPORTANCE The mechanisms responsible for the severe gut dysfunction characteristic of progressive HIV and SIV infection in humans and macaques are not completely elucidated. We report that ADO may play a key role in controlling immune activation/inflammation in nonprogressive SIV infections by limiting SIV-related gut inflammation. Conversely, in progressive SIV infection, significant degradation of ADO occurs, possibly due to an early increase of ADO deaminase complexing protein 2 (CD26) and adenosine deaminase. Our study supports therapeutic interventions to offset alterations of this pathway during progressive HIV/SIV infections. These potential approaches to control chronic immune activation and inflammation during pathogenic SIV infection may prevent HIV disease progression.


PLOS ONE | 2018

Emergence of resistance mutations in simian immunodeficiency virus (SIV)-infected rhesus macaques receiving non-suppressive antiretroviral therapy (ART)

Benjamin B. Policicchio; Paola Sette; Cuiling Xu; George Haret-Richter; Tammy Dunsmore; Ivona Pandrea; Ruy M. Ribeiro; Cristian Apetrei

Two SIVmac251-infected rhesus macaques received tenofovir/emtricitabine with raltegravir intensification. Viral rebound occurred during treatment and sequencing of reverse transcriptase and integrase genes identified multiple resistance mutations. Similar to HIV infection, antiretroviral-resistance mutations may occur in SIV-infected nonhuman primates receiving nonsuppressive ART. As ART administration to nonhuman primates is currently dramatically expanding, fueled by both cure research and the study of HIV-related comorbidities, viral resistance should be factored in the study design and data interpretation.


Journal of Virology | 2018

The dynamics of SIV 2-LTR Circles in the Presence and Absence of CD8+ Cells

Benjamin B. Policicchio; Erwing Fabian Cardozo; Paola Sette; Cuiling Xu; George Haret-Richter; Tammy Dunsmore; Cristian Apetrei; Ivona Pandrea; Ruy M. Ribeiro

ABSTRACT CD8+ cells play a key role in human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) infection, but their specific mechanism(s) of action in controlling the virus is unclear. Two-long-terminal-repeat (2-LTR) circles are extrachromosomal products generated upon failed integration of HIV/SIV. To understand the specific effects of CD8+ cells on infected cells, we analyzed the dynamics of 2-LTR circles in SIVmac251-infected rhesus macaques (RMs) treated with an integrase inhibitor (INT). Twenty RMs underwent CD8+ cell depletion and received raltegravir (RAL) monotherapy or a combination of both. Blood, lymph nodes (LNs), and gut biopsy specimens were routinely sampled. Plasma viral loads (pVLs) and 2-LTR circles from peripheral blood mononuclear cells (PBMCs) and LN lymphocytes were measured with quantitative reverse transcription-PCR (qRT-PCR). In the CD8 depletion group, an ∼1-log increase in pVLs and a slow increase in PBMC 2-LTRs occurred following depletion. In the INT group, a strong decline in pVLs upon treatment initiation and no change in 2-LTR levels were observed. In the INT and CD8+ cell depletion group, an increase in pVLs following CD8 depletion similar to that in the CD8 depletion group was observed, with a modest decline following INT initiation, and 2-LTR circles significantly increased in PBMCs and LNs. Analyzing the 2-LTR data across all treatment groups with a mathematical model indicates that the data best support an effect of CD8+ cells in killing cells prior to viral integration. Sensitivity analyses of these results confirm that effect but also allow for additional effects, which the data do not discriminate well. Overall, we show that INT does not significantly increase the levels of 2-LTR circles. However, CD8+ cell depletion increases the 2-LTR levels, which are enhanced in the presence of an INT. IMPORTANCE CD8+ T cells play an essential role in controlling HIV and SIV infection, but the specific mechanisms involved remain poorly understood. Due to failed viral infection, HIV and SIV can form 2-LTR extrachromosomal circles that can be quantified. We present novel data on the dynamics of these 2-LTR forms in a SIV-infected macaque model under three different treatment conditions: depletion of CD8+ cells, administration of the integrase inhibitor in a monotherapy, which favors the formation of 2-LTR circles, and a combination of the two treatments. We used a new mathematical model to help interpret the data, and the results suggest that CD8+ cells exert a killing effect on infected cells prior to virus integration. These results provide new insights into the mechanisms of action of CD8+ cells in SIV infection. Confirmation of our results would be an important step in understanding immune control of HIV.

Collaboration


Dive into the Benjamin B. Policicchio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivona Pandrea

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Cuiling Xu

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ruy M. Ribeiro

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Dongzhu Ma

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin Raehtz

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Tammy Dunsmore

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Tianyu He

University of Pittsburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge