Georgios Karavalakis
University of California, Riverside
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Georgios Karavalakis.
Aerosol Science and Technology | 2012
Zhongqing Zheng; Thomas D. Durbin; Georgios Karavalakis; Kent C. Johnson; Ajay Chaudhary; David R. Cocker; Jorn D. Herner; William H. Robertson; Tao Huai; Alberto Ayala; David B. Kittelson; Heejung S. Jung
This study provides an evaluation of the nature of sub-23-nm particles downstream of the European Particulate Measurement Programme (PMP) methodology, with prescribed cycles and on-road flow-of-traffic driving conditions. Particle number concentrations and size distributions were measured using two PMP measurement systems running simultaneously. For this analysis, the focus is on the real-time results from multiple instruments. The results revealed that a significant fraction of particles downstream of both PMP systems for all tested cycles were below 11 nm. The fraction of sub-11-nm particles observed downstream of the PMP system decreased when the overall dilution ratio of one PMP system was increased from 300 to 1500, suggesting those sub-11-nm particles were formed through re-nucleation of semivolatile precursors. When the evaporation tube temperature was increased from 300°C to 500°C, no difference in particle number concentrations was observed, suggesting that incomplete evaporation of semivolatile particles did not contribute to those sub-11-nm particles. Particle emissions were about one order of magnitude higher during flow-of-traffic driving along a highway with a steep grade than during the prescribed driving cycles. During the same flow-of-traffic condition, a sudden jump in PMP operationally defined solid particle concentration was observed, while the accumulation mode particle concentrations in the constant volume sampling (CVS) tunnel measured by an engine exhaust particle sizer (EEPS) only showed a slight increase. This discrepancy was attributed to the extensive growth of the re-nucleated particles downstream of the PMP systems. Copyright 2012 American Association for Aerosol Research
Environmental Science & Technology | 2015
Georgios Karavalakis; Daniel Short; Diep Vu; R. Robert Russell; Maryam Hajbabaei; Akua Asa-Awuku; Thomas D. Durbin
We assessed the emissions response of a fleet of seven light-duty gasoline vehicles for gasoline fuel aromatic content while operating over the LA92 driving cycle. The test fleet consisted of model year 2012 vehicles equipped with spark-ignition (SI) and either port fuel injection (PFI) or direct injection (DI) technology. Three gasoline fuels were blended to meet a range of total aromatics targets (15%, 25%, and 35% by volume) while holding other fuel properties relatively constant within specified ranges, and a fourth fuel was formulated to meet a 35% by volume total aromatics target but with a higher octane number. Our results showed statistically significant increases in carbon monoxide, nonmethane hydrocarbon, particulate matter (PM) mass, particle number, and black carbon emissions with increasing aromatics content for all seven vehicles tested. Only one vehicle showed a statistically significant increase in total hydrocarbon emissions. The monoaromatic hydrocarbon species that were evaluated showed increases with increasing aromatic content in the fuel. Changes in fuel composition had no statistically significant effect on the emissions of nitrogen oxides (NOx), formaldehyde, or acetaldehyde. A good correlation was also found between the PM index and PM mass and number emissions for all vehicle/fuel combinations with the total aromatics group being a significant contributor to the total PM index followed by naphthalenes and indenes.
Aerosol Science and Technology | 2015
Jian Xue; Yang Li; Xiaoliang Wang; Thomas D. Durbin; Kent C. Johnson; Georgios Karavalakis; Akua Asa-Awuku; Mark Villela; David C. Quiros; Shaohua Hu; Tao Huai; Alberto Ayala; Heejung S. Jung
Fast-sizing spectrometers, such as the TSI Engine Exhaust Particle Sizer (EEPS), have been widely used to measure transient particle size distributions of vehicle exhaust. Recently, size distributions measured during different test cycles have begun to be used for calculating suspended particulate mass; however, several recent evaluations have shown some deficiencies in this approach and discrepancies relative to the gravimetric reference method. The EEPS converts electrical charge carried by particles into size distributions based on mobility classification and a specific calibration, and TSI recently released a matrix optimized for vehicle emissions as described by Wang et al. (Submitteda). This study evaluates the performance of the new matrix (soot matrix) relative to the original matrix (default matrix) and reference size distributions measured by a scanning mobility particle sizer (SMPS). Steady-state particle size distributions were generated from the following five sources to evaluate exhaust particulates with various morphologies estimated by mass-mobility scaling exponent: (1) A diesel generator operating on ultralow sulfur diesel, (2) a diesel generator operating on biodiesel, (3) a gasoline direct-injection vehicle operating at two speeds, (4) a conventional port-fuel injection gasoline vehicle, and (4) a light-duty diesel (LDD) vehicle equipped with a diesel particulate filter. Generally, the new soot matrix achieved much better agreement with the SMPS reference for particles smaller than 30 nm and larger than 100 nm, and also broadened the accumulation mode distribution that was previously too narrow using the default matrix. However, EEPS distributions still did not agree with SMPS reference measurements when challenged by a strong nucleation mode during high-load operation of the LDD vehicle. This work quantifies the range of accuracy that can be expected when measuring particle size distribution, number concentration, and integrated particle mass of vehicle emissions when using the new static calibration derived based on the properties of classical diesel soot. Copyright 2015 American Association for Aerosol Research
Science of The Total Environment | 2017
Georgios Karavalakis; Nicholas Gysel; Debra A. Schmitz; Arthur K. Cho; Constantinos Sioutas; James J. Schauer; David R. Cocker; Thomas D. Durbin
The emissions and the potential health effects of particulate matter (PM) were assessed from two heavy-duty trucks with and without emission control aftertreatment systems when operating on CARB ultra-low sulfur diesel (ULSD) and three different biodiesel blends. The CARB ULSD was blended with soy-based biodiesel, animal fat biodiesel, and waste cooking oil biodiesel at 50vol%. Testing was conducted over the EPA Urban Dynamometer Driving Schedule (UDDS) in triplicate for both trucks. The aftertreatment controls effectively decreased PM mass and number emissions, as well as the polycyclic aromatic hydrocarbons (PAHs) compared to the uncontrolled truck. Emissions of nitrogen oxides (NOx) exhibited increases with the biodiesel blends, showing some feedstock dependency for the controlled truck. The oxidative potential of the emitted PM, measured by means of the dithiothreitol (DTT) assay, showed reductions with the use of biodiesel blends relative to CARB ULSD for the uncontrolled truck. Overall, the cellular responses to the particles from each fuel were reflective of the chemical content, i.e., particles from CARB ULSD were the most reactive and exhibited the highest cellular responses.
Toxicology reports | 2014
Ning Li; Poulomi Bhattacharya; Georgios Karavalakis; Keisha Williams; Nicholas Gysel; Nachamari Rivera-Rios
Commercial charbroiling emissions are a significant source of ambient particulate matter (PM) in urban settings. The objective of this study was to determine whether organic extract of PM emissions from commercial charbroiling meat operations could induce an inflammatory response in human bronchial epithelial cells and whether this effect was mediated by oxidative stress. PM samples were collected during cooking hamburgers on a commercial-grade under-fired charbroiler and sequentially extracted with water and methanol to obtain the aqueous PM suspension (AqPM) and organic extract (OE). The pro-oxidative and pro-inflammatory effects of OE were assessed using human bronchial epithelial cell line BEAS-2B. While AqPM did not have any effect, OE effectively induced the expression of heme oxygennase-1 and cyclooxygenase-2 in BEAS-2B cells. OE also up-regulated the levels of IL-6, IL-8, and prostaglandin E2. OE-induced cellular inflammatory response could be effectively suppressed by the antioxidant N-acetyl cysteine, nuclear factor (erythroid-derived 2)-like 2 activator sulforaphane and p38 MAPK inhibitor SB203580. In conclusion, organic chemicals emitted from commercial charbroiling meat operations could induce an inflammatory response in human bronchial epithelial cells, which was mediated by oxidative stress and p38 MAPK.
Aerosol Science and Technology | 2017
Daniel Short; Diep Vu; Vincent Chen; Carlos Espinoza; Tyler Berte; Georgios Karavalakis; Thomas D. Durbin; Akua Asa-Awuku
ABSTRACT Traffic-related pollutants are an ever-growing concern. However, the composition of particle emissions from new vehicle technologies using relevant current and prospective fuel blends is not known. This study tested four current and up-and-coming vehicle technologies with nine fuel blends with various concentrations of ethanol and iso-butanol. Vehicles were driven on both the federal test procedure (FTP) and the unified cycle (UC). Additional tests were conducted under steady-state speed conditions. The vehicle technologies include spray-guided gasoline direct injection (SG-GDI), wall-guided gasoline direct injection (WG-GDI), port-fuel injection flex fuel vehicle (PFI-FFV), and a wall-guided GDI-FFV. The fuels consisted of 10–83% ethanol and 16–55% iso-butanol in gasoline. The composition of soot, water-insoluble mass (WIM), water-soluble organic mass, and water-insoluble organic mass (WIOM), and OM was measured. The majority of emissions over FTP and UC were water-insoluble (>70%), and WIOM contributes mostly to OM. PFIs have lower soot and particulate matter (PM) emissions in comparison to the WG-GDI technology even while increasing the renewable fuel content. SG-GDI technology, which has not penetrated the market, show promise as soot and PM emissions are comparable to PFI vehicles while preserving the GDI fuel economy benefits. The WIM fraction in GDI-FFV consistently increased with increasing ethanol concentration. Lastly, the impact of the future vehicle emissions and traffic pollutants is discussed. SG-GDI technology is found to be a promising sustainable technology to enhance fuel economy and also reduce PM, soot, and WIM emissions. Copyright
Aerosol Science and Technology | 2016
Jian Xue; Yang Li; David C. Quiros; Xiaoliang Wang; Thomas D. Durbin; Kent C. Johnson; Georgios Karavalakis; Shaohua Hu; Tao Huai; Alberto Ayala; Heejung S. Jung
ABSTRACT Integrated particle size distribution (IPSD) is a promising alternative method for estimating particulate matter (PM) emissions at low levels. However, a recent light-duty vehicle (LDV) emissions study showed that particle mass estimated using IPSD (MIPSD) with the TSI Engine Exhaust Particle Sizer (EEPS) Default Matrix was 56–75% lower than mass derived using the reference gravimetric method (MGrav) over the Federal Test Procedure (FTP). In this study, MIPSD calculated with a new inversion matrix, the Soot Matrix, is compared with MGrav and also photoacoustic soot mass (MSoot), to evaluate potential improvement of the IPSD method for estimating PM mass emissions from LDVs. In addition, an aerodynamic particle sizer (APS) was used to estimate mass emission rates attributed to larger particles (0.54–2.5 µm in aerodynamic diameter) that are not measured by the EEPS. Based on testing of 10 light-duty vehicles over the FTP cycle, the Soot Matrix significantly improved agreement between MIPSD and MGrav by increasing slopes of MIPSD/MGrav from 0.45–0.57 to 0.76–1.01 for gasoline direct injected (GDI) vehicles; however, for port-fuel injection (PFI) gasoline vehicles, a significant discrepancy still existed between MIPSD and MGrav, with MIPSD accounting for 34 ± 37% of MGrav. For all vehicles, strong correlations between MIPSD and MSoot were obtained, indicating the IPSD method is capable of capturing mass of soot particles. The discrepancy between the MIPSD and MGrav for PFI vehicles, which have relatively low PM emissions (0.22 to 1.83 mg/mile), could be partially due to limited size range of the EEPS by not capturing larger particles (0.54–2.5 µm) that accounts for ∼0.08 mg/mile of PM emission, uncertainties of particle effective density, and/or gas-phase adsorption onto filters that is not detected by in situ aerosol instrumentation. Copyright
Aerosol Science and Technology | 2015
Diep Vu; Daniel Short; Georgios Karavalakis; Thomas D. Durbin; Akua Asa-Awuku
The physical and chemical properties of aerosols emitted from vehicles can vary in composition under different driving conditions. Thus, characterizing ephemeral changes in aerosol cloud condensation nuclei (CCN) activity and apparent hygroscopicity for vehicle-testing procedures conducted over transient drive cycles can be challenging. To evaluate CCN activity of these emitted aerosols, a closure method integrating traditional CCN measurements with fast time resolved aerosol instrumentation typically used to measure engine exhaust was utilized. Calibration of the method predicted activation diameters, Dd, within 10% and 15% of Dd derived from Köhler theory for two stable sources, aerosolized ammonium sulfate and α-pinene secondary organic aerosol, respectively. It was then applied to a transient source to estimate the effect of six different ethanol and iso-butanol gasoline blends on the hygroscopic properties of emissions downstream a gasoline direct injection light duty passenger vehicle over transient drive cycles. To describe the CCN activity, a single hygroscopicity parameter, kappa, was used. Results indicate low CCN activity with kappa ranging between ~0.002 and 0.06. Copyright 2015 American Association for Aerosol Research
Environmental Science & Technology | 2015
Daniel Short; Diep Vu; Thomas D. Durbin; Georgios Karavalakis; Akua Asa-Awuku
Typical gasoline consists of varying concentrations of aromatic hydrocarbons and octane ratings. However, their impacts on particulate matter (PM) such as black carbon (BC) and water-soluble and insoluble particle compositions are not well-defined. This study tests seven 2012 model year vehicles, which include one port fuel injection (PFI) configured hybrid vehicle, one PFI vehicle, and six gasoline direct injection (GDI) vehicles. Each vehicle was driven on the Unified transient testing cycle (UC) using four different fuels. Three fuels had a constant octane rating of 87 with varied aromatic concentrations at 15%, 25%, and 35%. A fourth fuel with higher octane rating, 91, contained 35% aromatics. BC, PM mass, surface tension, and water-soluble organic mass (WSOM) fractions were measured. The water-insoluble mass (WIM) fraction of the vehicle emissions was estimated. Increasing fuel aromatic content increases BC emission factors (EFs) of transient cycles. BC concentrations were higher for the GDI vehicles than the PFI and hybrid vehicles, suggesting a potential climate impact for increased GDI vehicle production. Vehicle steady-state testing showed that the hygroscopicity of PM emissions at high speeds (70 mph; κ > 1) are much larger than emissions at low speeds (30 mph; κ < 0.1). Iso-paraffin content in the fuels was correlated to the decrease in WSOM emissions. Both aromatic content and vehicle speed increase the amount of hygroscopic material found in particle emissions.
Environmental Science & Technology | 2018
Jiacheng Yang; Patrick Roth; Thomas D. Durbin; Kent C. Johnson; David R. Cocker; Akua Asa-Awuku; Rasto Brezny; Michael D. Geller; Georgios Karavalakis
We assessed the gaseous, particulate, and genotoxic pollutants from two current technology gasoline direct injection vehicles when tested in their original configuration and with a catalyzed gasoline particulate filter (GPF). Testing was conducted over the LA92 and US06 Supplemental Federal Test Procedure (US06) driving cycles on typical California E10 fuel. The use of a GPF did not show any fuel economy and carbon dioxide (CO2) emission penalties, while the emissions of total hydrocarbons (THC), carbon monoxide (CO), and nitrogen oxides (NOx) were generally reduced. Our results showed dramatic reductions in particulate matter (PM) mass, black carbon, and total and solid particle number emissions with the use of GPFs for both vehicles over the LA92 and US06 cycles. Particle size distributions were primarily bimodal in nature, with accumulation mode particles dominating the distribution profile and their concentrations being higher during the cold-start period of the cycle. Polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs were quantified in both the vapor and particle phases of the PM, with the GPF-equipped vehicles practically eliminating most of these species in the exhaust. For the stock vehicles, 2-3 ring compounds and heavier 5-6 ring compounds were observed in the PM, whereas the vapor phase was dominated mostly by 2-3 ring aromatic compounds.