Diep Vu
University of California, Riverside
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Diep Vu.
Environmental Science & Technology | 2015
Georgios Karavalakis; Daniel Short; Diep Vu; R. Robert Russell; Maryam Hajbabaei; Akua Asa-Awuku; Thomas D. Durbin
We assessed the emissions response of a fleet of seven light-duty gasoline vehicles for gasoline fuel aromatic content while operating over the LA92 driving cycle. The test fleet consisted of model year 2012 vehicles equipped with spark-ignition (SI) and either port fuel injection (PFI) or direct injection (DI) technology. Three gasoline fuels were blended to meet a range of total aromatics targets (15%, 25%, and 35% by volume) while holding other fuel properties relatively constant within specified ranges, and a fourth fuel was formulated to meet a 35% by volume total aromatics target but with a higher octane number. Our results showed statistically significant increases in carbon monoxide, nonmethane hydrocarbon, particulate matter (PM) mass, particle number, and black carbon emissions with increasing aromatics content for all seven vehicles tested. Only one vehicle showed a statistically significant increase in total hydrocarbon emissions. The monoaromatic hydrocarbon species that were evaluated showed increases with increasing aromatic content in the fuel. Changes in fuel composition had no statistically significant effect on the emissions of nitrogen oxides (NOx), formaldehyde, or acetaldehyde. A good correlation was also found between the PM index and PM mass and number emissions for all vehicle/fuel combinations with the total aromatics group being a significant contributor to the total PM index followed by naphthalenes and indenes.
Aerosol Science and Technology | 2017
Daniel Short; Diep Vu; Vincent Chen; Carlos Espinoza; Tyler Berte; Georgios Karavalakis; Thomas D. Durbin; Akua Asa-Awuku
ABSTRACT Traffic-related pollutants are an ever-growing concern. However, the composition of particle emissions from new vehicle technologies using relevant current and prospective fuel blends is not known. This study tested four current and up-and-coming vehicle technologies with nine fuel blends with various concentrations of ethanol and iso-butanol. Vehicles were driven on both the federal test procedure (FTP) and the unified cycle (UC). Additional tests were conducted under steady-state speed conditions. The vehicle technologies include spray-guided gasoline direct injection (SG-GDI), wall-guided gasoline direct injection (WG-GDI), port-fuel injection flex fuel vehicle (PFI-FFV), and a wall-guided GDI-FFV. The fuels consisted of 10–83% ethanol and 16–55% iso-butanol in gasoline. The composition of soot, water-insoluble mass (WIM), water-soluble organic mass, and water-insoluble organic mass (WIOM), and OM was measured. The majority of emissions over FTP and UC were water-insoluble (>70%), and WIOM contributes mostly to OM. PFIs have lower soot and particulate matter (PM) emissions in comparison to the WG-GDI technology even while increasing the renewable fuel content. SG-GDI technology, which has not penetrated the market, show promise as soot and PM emissions are comparable to PFI vehicles while preserving the GDI fuel economy benefits. The WIM fraction in GDI-FFV consistently increased with increasing ethanol concentration. Lastly, the impact of the future vehicle emissions and traffic pollutants is discussed. SG-GDI technology is found to be a promising sustainable technology to enhance fuel economy and also reduce PM, soot, and WIM emissions. Copyright
Aerosol Science and Technology | 2015
Diep Vu; Daniel Short; Georgios Karavalakis; Thomas D. Durbin; Akua Asa-Awuku
The physical and chemical properties of aerosols emitted from vehicles can vary in composition under different driving conditions. Thus, characterizing ephemeral changes in aerosol cloud condensation nuclei (CCN) activity and apparent hygroscopicity for vehicle-testing procedures conducted over transient drive cycles can be challenging. To evaluate CCN activity of these emitted aerosols, a closure method integrating traditional CCN measurements with fast time resolved aerosol instrumentation typically used to measure engine exhaust was utilized. Calibration of the method predicted activation diameters, Dd, within 10% and 15% of Dd derived from Köhler theory for two stable sources, aerosolized ammonium sulfate and α-pinene secondary organic aerosol, respectively. It was then applied to a transient source to estimate the effect of six different ethanol and iso-butanol gasoline blends on the hygroscopic properties of emissions downstream a gasoline direct injection light duty passenger vehicle over transient drive cycles. To describe the CCN activity, a single hygroscopicity parameter, kappa, was used. Results indicate low CCN activity with kappa ranging between ~0.002 and 0.06. Copyright 2015 American Association for Aerosol Research
Environmental Science & Technology | 2015
Daniel Short; Diep Vu; Thomas D. Durbin; Georgios Karavalakis; Akua Asa-Awuku
Typical gasoline consists of varying concentrations of aromatic hydrocarbons and octane ratings. However, their impacts on particulate matter (PM) such as black carbon (BC) and water-soluble and insoluble particle compositions are not well-defined. This study tests seven 2012 model year vehicles, which include one port fuel injection (PFI) configured hybrid vehicle, one PFI vehicle, and six gasoline direct injection (GDI) vehicles. Each vehicle was driven on the Unified transient testing cycle (UC) using four different fuels. Three fuels had a constant octane rating of 87 with varied aromatic concentrations at 15%, 25%, and 35%. A fourth fuel with higher octane rating, 91, contained 35% aromatics. BC, PM mass, surface tension, and water-soluble organic mass (WSOM) fractions were measured. The water-insoluble mass (WIM) fraction of the vehicle emissions was estimated. Increasing fuel aromatic content increases BC emission factors (EFs) of transient cycles. BC concentrations were higher for the GDI vehicles than the PFI and hybrid vehicles, suggesting a potential climate impact for increased GDI vehicle production. Vehicle steady-state testing showed that the hygroscopicity of PM emissions at high speeds (70 mph; κ > 1) are much larger than emissions at low speeds (30 mph; κ < 0.1). Iso-paraffin content in the fuels was correlated to the decrease in WSOM emissions. Both aromatic content and vehicle speed increase the amount of hygroscopic material found in particle emissions.
Fuel | 2014
Georgios Karavalakis; Daniel Short; Diep Vu; Mark Villela; Akua Asa-Awuku; Thomas D. Durbin
Energy | 2015
Georgios Karavalakis; Daniel Short; Diep Vu; Robert L. Russell; Akua Asa-Awuku; Heejung Jung; Kent C. Johnson; Thomas D. Durbin
SAE 2013 World Congress & Exhibition | 2013
George Karavalakis; Daniel Short; Maryam Hajbabaei; Diep Vu; Mark Villela; R. Robert Russell; Thomas D. Durbin; Akua Asa-Awuku
Journal of Aerosol Science | 2015
Daniel Short; Diep Vu; Thomas D. Durbin; Georgios Karavalakis; Akua Asa-Awuku
Environmental Science & Technology | 2017
Diep Vu; Daniel Short; Georgios Karavalakis; Thomas D. Durbin; Akua Asa-Awuku
SAE 2015 World Congress & ExhibitionSAE International | 2015
George Karavalakis; Daniel Short; Diep Vu; R. Robert Russell; Akua Asa-Awuku; Thomas D. Durbin