Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giuseppe Piccioni is active.

Publication


Featured researches published by Giuseppe Piccioni.


Science | 2015

The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta

F. Capaccioni; Angioletta Coradini; G. Filacchione; S. Erard; Gabriele Arnold; P. Drossart; M.C. De Sanctis; D. Bockelee-Morvan; M. T. Capria; F. Tosi; Cedric Leyrat; B. Schmitt; Eric Quirico; P. Cerroni; V. Mennella; A. Raponi; M. Ciarniello; T. B. McCord; L. V. Moroz; E. Palomba; E. Ammannito; M. A. Barucci; G. Bellucci; J. Benkhoff; Jean-Pierre Bibring; A. Blanco; Maria I. Blecka; Robert W. Carlson; U. Carsenty; L. Colangeli

The VIRTIS (Visible, Infrared and Thermal Imaging Spectrometer) instrument on board the Rosetta spacecraft has provided evidence of carbon-bearing compounds on the nucleus of the comet 67P/Churyumov-Gerasimenko. The very low reflectance of the nucleus (normal albedo of 0.060 ± 0.003 at 0.55 micrometers), the spectral slopes in visible and infrared ranges (5 to 25 and 1.5 to 5% kÅ−1), and the broad absorption feature in the 2.9-to-3.6–micrometer range present across the entire illuminated surface are compatible with opaque minerals associated with nonvolatile organic macromolecular materials: a complex mixture of various types of carbon-hydrogen and/or oxygen-hydrogen chemical groups, with little contribution of nitrogen-hydrogen groups. In active areas, the changes in spectral slope and absorption feature width may suggest small amounts of water-ice. However, no ice-rich patches are observed, indicating a generally dehydrated nature for the surface currently illuminated by the Sun.


Science | 2010

Recent hotspot volcanism on venus from VIRTIS emissivity data

Suzanne E. Smrekar; Ellen R. Stofan; Nils Mueller; Allan H. Treiman; Linda T. Elkins-Tanton; Joern Helbert; Giuseppe Piccioni; Pierre Drossart

Hotspots on Venus The surface of Venus shows clear signs of volcanism, but are there active volcanoes on Venus today? The answer to this question will bear on our understanding of the planets climate evolution and interior dynamics. Using surface thermal emissivity data returned by the Venus Express spacecraft, Smrekar et al. (p. 605, published online 8 April) looked at three hotspots on Venus. These places were identified by analogy with terrestrial hotspots like Hawaii, which are believed to overlie mantle plumes and to be the most likely sites for current volcanic activity. Lava flows at the three hotspots have anomalously high thermal emissions when compared with their surroundings. Low emissivity is generally interpreted as the result of surface alteration by the corrosive atmosphere of Venus. High emissivity implies that not much alteration took place and thus that the hotspots must represent recently active volcanoes younger than 2.5 million years. Satellite observations suggest that Venus is a geologically active planet. The questions of whether Venus is geologically active and how the planet has resurfaced over the past billion years have major implications for interior dynamics and climate change. Nine “hotspots”—areas analogous to Hawaii, with volcanism, broad topographic rises, and large positive gravity anomalies suggesting mantle plumes at depth—have been identified as possibly active. This study used variations in the thermal emissivity of the surface observed by the Visible and Infrared Thermal Imaging Spectrometer on the European Space Agency’s Venus Express spacecraft to identify compositional differences in lava flows at three hotspots. The anomalies are interpreted as a lack of surface weathering. We estimate the flows to be younger than 2.5 million years and probably much younger, about 250,000 years or less, indicating that Venus is actively resurfacing.


Nature | 2007

South-polar features on Venus similar to those near the north pole

Giuseppe Piccioni; P. Drossart; A. Sánchez-Lavega; R. Hueso; F. W. Taylor; Colin F. Wilson; D. Grassi; L. V. Zasova; Maria Luisa Moriconi; A. Adriani; Sebastien Lebonnois; Angioletta Coradini; B. Bezard; F. Angrilli; Gabriele Arnold; Kevin H. Baines; G. Bellucci; J. Benkhoff; Jean-Pierre Bibring; A. Blanco; M. I. Blecka; Robert W. Carlson; A. M. Di Lellis; Th. Encrenaz; Stephane Erard; S. Fonti; V. Formisano; T. Fouchet; Raphael F. Garcia; Rainer Haus

Venus has no seasons, slow rotation and a very massive atmosphere, which is mainly carbon dioxide with clouds primarily of sulphuric acid droplets. Infrared observations by previous missions to Venus revealed a bright ‘dipole’ feature surrounded by a cold ‘collar’ at its north pole. The polar dipole is a ‘double-eye’ feature at the centre of a vast vortex that rotates around the pole, and is possibly associated with rapid downwelling. The polar cold collar is a wide, shallow river of cold air that circulates around the polar vortex. One outstanding question has been whether the global circulation was symmetric, such that a dipole feature existed at the south pole. Here we report observations of Venus’ south-polar region, where we have seen clouds with morphology much like those around the north pole, but rotating somewhat faster than the northern dipole. The vortex may extend down to the lower cloud layers that lie at about 50 km height and perhaps deeper. The spectroscopic properties of the clouds around the south pole are compatible with a sulphuric acid composition.


Nature | 2007

A dynamic upper atmosphere of Venus as revealed by VIRTIS on Venus Express

P. Drossart; Giuseppe Piccioni; J.-C. Gérard; Miguel Angel Lopez-Valverde; A. Sánchez-Lavega; L. V. Zasova; R. Hueso; F. W. Taylor; B. Bezard; A. Adriani; F. Angrilli; Gabriele Arnold; Kevin H. Baines; G. Bellucci; J. Benkhoff; Jean-Pierre Bibring; A. Blanco; M. I. Blecka; Robert W. Carlson; Angioletta Coradini; A. M. Di Lellis; Th. Encrenaz; Stephane Erard; S. Fonti; V. Formisano; T. Fouchet; Raphael F. Garcia; Rainer Haus; J. Helbert; Nikolay Ignatiev

The upper atmosphere of a planet is a transition region in which energy is transferred between the deeper atmosphere and outer space. Molecular emissions from the upper atmosphere (90–120 km altitude) of Venus can be used to investigate the energetics and to trace the circulation of this hitherto little-studied region. Previous spacecraft and ground-based observations of infrared emission from CO2, O2 and NO have established that photochemical and dynamic activity controls the structure of the upper atmosphere of Venus. These data, however, have left unresolved the precise altitude of the emission owing to a lack of data and of an adequate observing geometry. Here we report measurements of day-side CO2 non-local thermodynamic equilibrium emission at 4.3 µm, extending from 90 to 120 km altitude, and of night-side O2 emission extending from 95 to 100 km. The CO2 emission peak occurs at ∼115 km and varies with solar zenith angle over a range of ∼10 km. This confirms previous modelling, and permits the beginning of a systematic study of the variability of the emission. The O2 peak emission happens at 96 km ± 1 km, which is consistent with three-body recombination of oxygen atoms transported from the day side by a global thermospheric sub-solar to anti-solar circulation, as previously predicted.


Science | 2011

The Surface Composition and Temperature of Asteroid 21 Lutetia As Observed by Rosetta/VIRTIS

Angioletta Coradini; F. Capaccioni; S. Erard; Gabriele Arnold; M.C. De Sanctis; G. Filacchione; F. Tosi; M. A. Barucci; M. T. Capria; E. Ammannito; D. Grassi; Giuseppe Piccioni; S. Giuppi; G. Bellucci; J. Benkhoff; Jean-Pierre Bibring; A. Blanco; Maria I. Blecka; D. Bockelee-Morvan; F. Carraro; R. Carlson; U. Carsenty; P. Cerroni; L. Colangeli; M. Combes; Michael R. Combi; J. Crovisier; P. Drossart; E. T. Encrenaz; C. Federico

A spacecraft flyby of an asteroid reveals a high-density body that is more like a planetesimal than a rubble pile. The Visible, InfraRed, and Thermal Imaging Spectrometer (VIRTIS) on Rosetta obtained hyperspectral images, spectral reflectance maps, and temperature maps of the asteroid 21 Lutetia. No absorption features, of either silicates or hydrated minerals, have been detected across the observed area in the spectral range from 0.4 to 3.5 micrometers. The surface temperature reaches a maximum value of 245 kelvin and correlates well with topographic features. The thermal inertia is in the range from 20 to 30 joules meter−2 kelvin−1 second−0.5, comparable to a lunarlike powdery regolith. Spectral signatures of surface alteration, resulting from space weathering, seem to be missing. Lutetia is likely a remnant of the primordial planetesimal population, unaltered by differentiation processes and composed of chondritic materials of enstatitic or carbonaceous origin, dominated by iron-poor minerals that have not suffered aqueous alteration.


Nature | 2008

Atmospheric structure and dynamics as the cause of ultraviolet markings in the clouds of Venus

Dmitrij V. Titov; F. W. Taylor; Nikolay Ignatiev; Wojciech J. Markiewicz; Giuseppe Piccioni; Pierre Drossart

When seen in ultraviolet light, Venus has contrast features that arise from the non-uniform distribution of unknown absorbers within the sulphuric acid clouds and seem to trace dynamical activity in the middle atmosphere. It has long been unclear whether the global pattern arises from differences in cloud top altitude (which was earlier estimated to be 66–72 km), compositional variations or temperature contrasts. Here we report multi-wavelength imaging that reveals that the dark low latitudes are dominated by convective mixing which brings the ultraviolet absorbers up from depth. The bright and uniform mid-latitude clouds reside in the ‘cold collar’, an annulus of cold air characterized by ∼30 K lower temperatures with a positive lapse rate, which suppresses vertical mixing and cuts off the supply of ultraviolet absorbers from below. In low and middle latitudes, the visible cloud top is located at a remarkably constant altitude of 72 ± 1 km in both the ultraviolet dark and bright regions, indicating that the brightness variations result from compositional differences caused by the colder environment rather than by elevation changes. The cloud top descends to ∼64 km in the eye of the hemispheric vortex, which appears as a depression in the upper cloud deck. The ultraviolet dark circular streaks enclose the vortex eye and are dynamically connected to it.


Astronomy and Astrophysics | 2008

First detection of hydroxyl in the atmosphere of Venus

Giuseppe Piccioni; P. Drossart; L. V. Zasova; A. Migliorini; J.-C. Gérard; Franklin P. Mills; A. Shakun; A. García Muñoz; N.I. Ignatiev; D. Grassi; V. Cottini; F. W. Taylor; Stephane Erard

Context. Airglow emissions, such as previously observed from NO and O2(a−X )( 0−0) on Venus, provide insight into the chemical and dynamical processes that control the composition and energy balance in the upper atmospheres of planets. The OH airglow emission has been observed previously only in the Earth’s atmosphere where it has been used to infer atomic oxygen abundances. The O2(a − X )( 0−1) airglow emission also has only been observed in the Earth’s atmosphere, and neither laboratory nor theoretical studies have reached a consensus on its transition probability. Aims. We report measurements of night-side airglow emission in the atmosphere of Venus in the OH (2−0), OH (1−0), O2(a − X )( 0−1), and O2(a − X )( 0−0) bands. This is the first detection of the first three of these airglow emissions on another planet. These observations provide the most direct observational constraints to date on H, OH, and O3, key species in the chemistry of Venus’ upper atmosphere. Methods. Airglow emission detected at wavelengths of 1.40−1.49 and 2.6−3.14 µm in limb observations by the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) on the Venus Express spacecraft is attributed to the OH (2−0) and (1−0) transitions, respectively, and compared to calculations from a photochemical model. Simultaneous limb observations of airglow emission in the O2(a − X )( 0−0) and (0−1) bands at 1.27 and 1.58 µm, respectively, were used to derive the ratio of the transition probabilities for these bands. Results. The integrated emission rates for the OH (2−0) and (1−0) bands were measured to be 100 ± 40 and 880 ± 90 kR respectively, both peaking at an altitude of 96 ± 2 km near midnight local time for the considered orbit. The measured ratio of the O2(a −X )( 0−0) and (0−1) bands is 78 ± 8. Conclusions. Photochemical model calculations suggest the observed OH emission is produced primarily via the Bates-Nicolet mechanism, as on the Earth. The observed ratio of the intensities of the O2(a − X )( 0−0) and (0−1) bands implies the ratio of their transition probabilities is 63 ± 6.


Planetary and Space Science | 1998

VIRTIS: An imaging spectrometer for the ROSETTA mission

A Coradine; F Capaccioni; P Drossart; Alain Semery; G Arnold; U. Schade; F. Angrilli; M.A Barucci; G Bellucci; G. Bianchini; Jean-Pierre Bibring; Angeles Blanco; Maria I. Blecka; D Bockelee-Morvan; R. Bonsignori; M Bouye; E. Bussoletti; M.T Capria; R. Carlson; U Carsenty; P Cerroni; L Colangeli; M Combes; Michael R. Combi; J Crovisier; M Dami; M.C. Desanctis; A.M DiLellis; E Dotto; T Encrenaz

The VIRTIS (Visual IR Thermal Imaging Spectrometer) experiment has been one of the most successful experiments built in Europe for Planetary Exploration. VIRTIS, developed in cooperation among Italy, France and Germany, has been already selected as a key experiment for 3 planetary missions: the ESA-Rosetta and Venus Express and NASA-Dawn. VIRTIS on board Rosetta and Venus Express are already producing high quality data: as far as Rosetta is concerned, the Earth-Moon system has been successfully observed during the Earth Swing-By manouver (March 2005) and furthermore, VIRTIS will collect data when Rosetta flies by Mars in February 2007 at a distance of about 200 kilometres from the planet. Data from the Rosetta mission will result in a comparison – using the same combination of sophisticated experiments – of targets that are poorly differentiated and are representative of the composition of different environment of the primordial solar system. Comets and asteroids, in fact, are in close relationship with the planetesimals, which formed from the solar nebula 4.6 billion years ago. The Rosetta mission payload is designed to obtain this information combining in situ analysis of comet material, obtained by the small lander Philae, and by a long lasting and detailed remote sensing of the comet, obtained by instrument on board the orbiting Spacecraft. The combination of remote sensing and in situ measurements will increase the scientific return of the mission. In fact, the “in situ” measurements will provide “ground-truth” for the remote sensing information, and, in turn, the locally collected data will be interpreted in the appropriate context provided by the remote sensing investigation. VIRTIS is part of the scientific payload of the Rosetta Orbiter and will detect and characterise the evolution of specific signatures – such as the typical spectral bands of minerals and molecules – arising from surface components and from materials dispersed in the coma. The identification of spectral features is a primary goal of the Rosetta mission as it will allow identification of the nature of the main constituent of the comets. Moreover, the surface thermal evolution during comet approach to sun will be also studied.


Science | 2011

Venus’s Southern Polar Vortex Reveals Precessing Circulation

David Luz; D.L. Berry; Giuseppe Piccioni; P. Drossart; R. Politi; Colin F. Wilson; S. Erard; F. Nuccilli

Observations with the Venus Express Orbiter reveal complex polar atmospheric dynamics. Initial images of Venus’s south pole by the Venus Express mission have shown the presence of a bright, highly variable vortex, similar to that at the planet’s north pole. Using high-resolution infrared measurements of polar winds from the Venus Express Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) instrument, we show the vortex to have a constantly varying internal structure, with a center of rotation displaced from the geographic south pole by ~3 degrees of latitude and that drifts around the pole with a period of 5 to 10 Earth days. This is indicative of a nonsymmetric and varying precession of the polar atmospheric circulation with respect to the planetary axis.


Journal of Geophysical Research | 2008

Tropospheric carbon monoxide concentrations and variability on Venus from Venus Express/VIRTIS-M observations

C. C. C. Tsang; Patrick G. J. Irwin; Colin F. Wilson; F. W. Taylor; Christopher Lee; Remco J. de Kok; P. Drossart; Giuseppe Piccioni; Bruno Bézard; Simon B. Calcutt

We present nightside observations of tropospheric carbon monoxide in the southern hemisphere near the 35 km height level, the first from Venus Express/Visible and Infrared Thermal Imaging Spectrometer (VIRTIS)-M-IR. VIRTIS-M data from 2.18 to 2.50 μm, with a spectral resolution of 10 nm, were used in the analysis. Spectra were binned, with widths ranging from 5 to 30 spatial pixels, to increase the signal-to-noise ratio, while at the same time reducing the total number of retrievals required for complete spatial coverage. We calculate the mean abundance for carbon monoxide at the equator to be 23 ± 2 ppm. The CO concentration increases toward the poles, peaking at a latitude of approximately 60°S, with a mean value of 32 ± 2 ppm. This 40% equator-to-pole increase is consistent with the values found by Collard et al. (1993) from Galileo/NIMS observations. Observations suggest an overturning in this CO gradient past 60°S, declining to abundances seen in the midlatitudes. Zonal variability in this peak value has also been measured, varying on the order of 10% (~3 ppm) at different longitudes on a latitude circle. The zonal variability of the CO abundance has possible implications for the lifetime of CO and its dynamics in the troposphere. This work has definitively established a distribution of tropospheric CO, which is consistent with a Hadley cell circulation, and placed limits on the latitudinal extent of the cell.

Collaboration


Dive into the Giuseppe Piccioni's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Grassi

Planetary Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge