Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gopala Krishna Mannala is active.

Publication


Featured researches published by Gopala Krishna Mannala.


International Journal of Molecular Sciences | 2012

microRNA Response to Listeria monocytogenes Infection in Epithelial Cells

Benjamin Izar; Gopala Krishna Mannala; Mobarak Abu Mraheil; Trinad Chakraborty; Torsten Hain

microRNAs represent a family of very small non-coding RNAs that control several physiologic and pathologic processes, including host immune response and cancer by antagonizing a number of target mRNAs. There is limited knowledge about cell expression and the regulatory role of microRNAs following bacterial infections. We investigated whether infection with a Gram-positive bacterium leads to altered expression of microRNAs involved in the host cell response in epithelial cells. Caco-2 cells were infected with Listeria monocytogenes EGD-e, a mutant strain (ΔinlAB or Δhly) or incubated with purified listeriolysin (LLO). Total RNA was isolated and microRNA and target gene expression was compared to the expression in non-infected cells using microRNA microarrays and qRT-PCR. We identified and validated five microRNAs (miR- 146b, miR-16, let-7a1, miR-145 and miR-155) that were significantly deregulated following listerial infection. We show that expression patterns of particular microRNAs strongly depend on pathogen localization and the presence of bacterial effector proteins. Strikingly, miR-155 which was shown to have an important role in inflammatory responses during infection was induced by wild-type bacteria, by LLO-deficient bacteria and following incubation with purified LLO. It was downregulated following ΔinlAB infection indicating a new potent role for internalins in listerial pathogenicity and miRNA regulation. Concurrently, we observed differences in target transcript expression of the investigated miRNAs. We provide first evidence that L. monocytogenes infection leads to deregulation of a set of microRNAs with important roles in host response. Distinct microRNA expression depends on both LLO and pathogen localization.


PLOS ONE | 2014

Ultra Deep Sequencing of Listeria monocytogenes sRNA Transcriptome Revealed New Antisense RNAs

Sebastian Behrens; Stefanie Widder; Gopala Krishna Mannala; Xiaoxing Qing; Ramakanth Madhugiri; Nathalie Kefer; Mobarak Abu Mraheil; Thomas Rattei; Torsten Hain

Listeria monocytogenes, a gram-positive pathogen, and causative agent of listeriosis, has become a widely used model organism for intracellular infections. Recent studies have identified small non-coding RNAs (sRNAs) as important factors for regulating gene expression and pathogenicity of L. monocytogenes. Increased speed and reduced costs of high throughput sequencing (HTS) techniques have made RNA sequencing (RNA-Seq) the state-of-the-art method to study bacterial transcriptomes. We created a large transcriptome dataset of L. monocytogenes containing a total of 21 million reads, using the SOLiD sequencing technology. The dataset contained cDNA sequences generated from L. monocytogenes RNA collected under intracellular and extracellular condition and additionally was size fractioned into three different size ranges from <40 nt, 40–150 nt and >150 nt. We report here, the identification of nine new sRNAs candidates of L. monocytogenes and a reevaluation of known sRNAs of L. monocytogenes EGD-e. Automatic comparison to known sRNAs revealed a high recovery rate of 55%, which was increased to 90% by manual revision of the data. Moreover, thorough classification of known sRNAs shed further light on their possible biological functions. Interestingly among the newly identified sRNA candidates are antisense RNAs (asRNAs) associated to the housekeeping genes purA, fumC and pgi and potentially their regulation, emphasizing the significance of sRNAs for metabolic adaptation in L. monocytogenes.


Molecular Microbiology | 2016

Structure of the bacterial cell division determinant GpsB and its interaction with penicillin‐binding proteins

Jeanine Rismondo; Robert M. Cleverley; Harriet V. Lane; Stephanie Großhennig; Anne Steglich; Lars Möller; Gopala Krishna Mannala; Torsten Hain; Richard J. Lewis; Sven Halbedel

Each bacterium has to co‐ordinate its growth with division to ensure genetic stability of the population. Consequently, cell division and growth are tightly regulated phenomena, albeit different bacteria utilise one of several alternative regulatory mechanisms to maintain control. Here we consider GpsB, which is linked to cell growth and division in Gram‐positive bacteria. ΔgpsB mutants of the human pathogen Listeria monocytogenes show severe lysis, division and growth defects due to distortions of cell wall biosynthesis. Consistent with this premise, GpsB interacts both in vitro and in vivo with the major bi‐functional penicillin‐binding protein. We solved the crystal structure of GpsB and the interaction interfaces in both proteins are identified and validated. The inactivation of gpsB results in strongly attenuated virulence in animal experiments, comparable in degree to classical listerial virulence factor mutants. Therefore, GpsB is essential for in vitro and in vivo growth of a highly virulent food‐borne pathogen, suggesting that GpsB could be a target for the future design of novel antibacterials.


Frontiers in Microbiology | 2015

A detailed view of the intracellular transcriptome of Listeria monocytogenes in murine macrophages using RNA-seq.

Tilman Schultze; Rolf Hilker; Gopala Krishna Mannala; Katrin Gentil; Markus Weigel; Neda Farmani; Anita Windhorst; Alexander Goesmann; Trinad Chakraborty; Torsten Hain

Listeria monocytogenes is a bacterial pathogen and causative agent for the foodborne infection listeriosis, which is mainly a threat for pregnant, elderly, or immunocompromised individuals. Due to its ability to invade and colonize diverse eukaryotic cell types including cells from invertebrates, L. monocytogenes has become a well-established model organism for intracellular growth. Almost 10 years ago, we and others presented the first whole-genome microarray-based intracellular transcriptome of L. monocytogenes. With the advent of newer technologies addressing transcriptomes in greater detail, we revisit this work, and analyze the intracellular transcriptome of L. monocytogenes during growth in murine macrophages using a deep sequencing based approach. We detected 656 differentially expressed genes of which 367 were upregulated during intracellular growth in macrophages compared to extracellular growth in Brain Heart Infusion broth. This study confirmed ∼64% of all regulated genes previously identified by microarray analysis. Many of the regulated genes that were detected in the current study involve transporters for various metals, ions as well as complex sugars such as mannose. We also report changes in antisense transcription, especially upregulations during intracellular bacterial survival. A notable finding was the detection of regulatory changes for a subset of temperate A118-like prophage genes, thereby shedding light on the transcriptional profile of this bacteriophage during intracellular growth. In total, our study provides an updated genome-wide view of the transcriptional landscape of L. monocytogenes during intracellular growth and represents a rich resource for future detailed analysis.


Applied and Environmental Microbiology | 2015

Global Transcriptome and Mutagenic Analyses of the Acid Tolerance Response of Salmonella enterica Serovar Typhimurium

Daniel Ryan; Niladri Bhusan Pati; Urmesh K. Ojha; Chandrashekhar Padhi; Shilpa Ray; Sangeeta Jaiswal; Gajinder Pal Singh; Gopala Krishna Mannala; Tilman Schultze; Trinad Chakraborty; Mrutyunjay Suar

ABSTRACT Salmonella enterica serovar Typhimurium (S. Typhimurium) is one of the leading causative agents of food-borne bacterial gastroenteritis. Swift invasion through the intestinal tract and successful establishment in systemic organs are associated with the adaptability of S. Typhimurium to different stress environments. Low-pH stress serves as one of the first lines of defense in mammalian hosts, which S. Typhimurium must efficiently overcome to establish an infection. Therefore, a better understanding of the molecular mechanisms underlying the adaptability of S. Typhimurium to acid stress is highly relevant. In this study, we have performed a transcriptome analysis of S. Typhimurium under the acid tolerance response (ATR) and found a large number of genes (∼47%) to be differentially expressed (more than 1.5-fold or less than −1.5-fold; P < 0.01). Functional annotation revealed differentially expressed genes to be associated with regulation, metabolism, transport and binding, pathogenesis, and motility. Additionally, our knockout analysis of a subset of differentially regulated genes facilitated the identification of proteins that contribute to S. Typhimurium ATR and virulence. Mutants lacking genes encoding the K+ binding and transport protein KdpA, hypothetical protein YciG, the flagellar hook cap protein FlgD, and the nitrate reductase subunit NarZ were significantly deficient in their ATRs and displayed varied in vitro virulence characteristics. This study offers greater insight into the transcriptome changes of S. Typhimurium under the ATR and provides a framework for further research on the subject.


Molecular & Cellular Proteomics | 2014

A Systematic Proteomic Analysis of Listeria monocytogenes House-keeping Protein Secretion Systems

Sven Halbedel; Swantje Reiss; Birgit Hahn; Dirk Albrecht; Gopala Krishna Mannala; Trinad Chakraborty; Torsten Hain; Susanne Engelmann; Antje Flieger

Listeria monocytogenes is a firmicute bacterium causing serious infections in humans upon consumption of contaminated food. Most of its virulence factors are secretory proteins either released to the medium or attached to the bacterial surface. L. monocytogenes encodes at least six different protein secretion pathways. Although great efforts have been made in the past to predict secretory proteins and their secretion routes using bioinformatics, experimental evidence is lacking for most secretion systems. Therefore, we constructed mutants in the main housekeeping protein secretion systems, which are the Sec-dependent transport, the YidC membrane insertases SpoIIIJ and YqjG, as well as the twin-arginine pathway, and analyzed their secretion and virulence defects. Our results demonstrate that Sec-dependent secretion and membrane insertion of proteins via YidC proteins are essential for viability of L. monocytogenes. Depletion of SecA or YidC activity severely affected protein secretion, whereas loss of the Tat-pathway was without any effect on secretion, viability, and virulence. Two-dimensional gel electrophoresis combined with protein identification by mass spectrometry revealed that secretion of many virulence factors and of enzymes synthesizing and degrading the cell wall depends on the SecA route. This finding was confirmed by SecA inhibition experiments using sodium azide. Analysis of secretion of substrates typically dependent on the accessory SecA2 ATPase in wild type and azide resistant mutants of L. monocytogenes revealed for the first time that SecA2-dependent protein secretion also requires the ATPase activity of the house-keeping SecA protein.


BMC Microbiology | 2016

TLR9 mediates S. aureus killing inside osteoblasts via induction of oxidative stress

Walid Mohamed; Eugen Domann; Trinad Chakraborty; Gopala Krishna Mannala; Katrin S. Lips; Christian Heiss; Reinhard Schnettler; Volker Alt

BackgroundStaphylococcus aureus is the principle causative pathogen of osteomyelitis and implant-associated bone infections. It is able to invade and to proliferate inside osteoblasts thus avoiding antibiotic therapy and the host immune system. Therefore, development of alternative approaches to stimulate host innate immune responses could be beneficial in prophylaxis against S. aureus infection. TLR9 is the intracellular receptor which recognizes unmethylated bacterial CpG-DNA and activates immune cells. Synthetic CpG-motifs containing oligodeoxynucleotide (CpG-ODNs) mimics the stimulatory effect of bacterial DNA.ResultsOsteoblast-like SAOS-2 cells were pretreated with CpG-ODN type-A 2216, type-B 2006, or negative CpG-ODN 2243 (negative control) 4 h before infection with S. aureus isolate EDCC 5055 (=DSM 28763). Intracellular bacteria were streaked on BHI plates 4 h and 20 h after infection. ODN2216 as well as ODN2006 but not ODN2243 were able to significantly inhibit the intracellular bacterial growth because about 31 % as well as 43 % of intracellular S. aureus could survive the pretreatment of SAOS-2 cells with ODN2216 or ODN2006 respectively 4 h and 20 h post-infection. RT-PCR analysis of cDNAs from SAOS-2 cells showed that pretreatment with ODN2216 or ODN2006 stimulated the expression of TLR9. Pretreatment of SAOS-2 cells with ODN2216 or ODN2006 but not ODN2243 managed to induce reactive oxygen species (ROS) production inside osteoblasts as measured by flow cytometry analysis. Moreover, treating SAOS-2 cells with the antioxidant Diphenyleneiodonium (DPI) obviously reduced S. aureus killing ability of TLR9 agonists mediated by oxidative stress.ConclusionsIn this work we demonstrated for the first time that CPG-ODNs have inhibitory effects on S. aureus survival inside SAOS-2 osteoblast-like cell line. This effect was attributed to stimulation of TLR9 and subsequent induction of oxidative stress. Pretreatment of infected SAOS-2 cells with ROS inhibitors resulted in the abolishment of the CPG-ODNs killing effects.


PLOS ONE | 2014

Detection of Very Long Antisense Transcripts by Whole Transcriptome RNA-Seq Analysis of Listeria monocytogenes by Semiconductor Sequencing Technology

Stefanie Wehner; Gopala Krishna Mannala; Xiaoxing Qing; Ramakanth Madhugiri; Trinad Chakraborty; Mobarak Abu Mraheil; Torsten Hain; Manja Marz

The Gram-positive bacterium Listeria monocytogenes is the causative agent of listeriosis, a severe food-borne infection characterised by abortion, septicaemia, or meningoencephalitis. L. monocytogenes causes outbreaks of febrile gastroenteritis and accounts for community-acquired bacterial meningitis in humans. Listeriosis has one of the highest mortality rates (up to 30%) of all food-borne infections. This human pathogenic bacterium is an important model organism for biomedical research to investigate cell-mediated immunity. L. monocytogenes is also one of the best characterised bacterial systems for the molecular analysis of intracellular parasitism. Recently several transcriptomic studies have also made the ubiquitous distributed bacterium as a model to understand mechanisms of gene regulation from the environment to the infected host on the level of mRNA and non-coding RNAs (ncRNAs). We have used semiconductor sequencing technology for RNA-seq to investigate the repertoire of listerial ncRNAs under extra- and intracellular growth conditions. Furthermore, we applied a new bioinformatic analysis pipeline for detection, comparative genomics and structural conservation to identify ncRNAs. With this work, in total, 741 ncRNA locations of potential ncRNA candidates are now known for L. monocytogenes, of which 611 ncRNA candidates were identified by RNA-seq. 441 transcribed ncRNAs have never been described before. Among these, we identified novel long non-coding antisense RNAs with a length of up to 5,400 nt e.g. opposite to genes coding for internalins, methylases or a high-affinity potassium uptake system, namely the kdpABC operon, which were confirmed by qRT-PCR analysis. RNA-seq, comparative genomics and structural conservation of L. monocytogenes ncRNAs illustrate that this human pathogen uses a large number and repertoire of ncRNA including novel long antisense RNAs, which could be important for intracellular survival within the infected eukaryotic host.


Frontiers in Cellular and Infection Microbiology | 2014

Current status of antisense RNA-mediated gene regulation in Listeria monocytogenes

Tilman Schultze; Benjamin Izar; Xiaoxing Qing; Gopala Krishna Mannala; Torsten Hain

Listeria monocytogenes is a Gram-positive human-pathogen bacterium that served as an experimental model for investigating fundamental processes of adaptive immunity and virulence. Recent novel technologies allowed the identification of several hundred non-coding RNAs (ncRNAs) in the Listeria genome and provided insight into an unexpected complex transcriptional machinery. In this review, we discuss ncRNAs that are encoded on the opposite strand of the target gene and are therefore termed antisense RNAs (asRNAs). We highlight mechanistic and functional concepts of asRNAs in L. monocytogenes and put these in context of asRNAs in other bacteria. Understanding asRNAs will further broaden our knowledge of RNA-mediated gene regulation and may provide targets for diagnostic and antimicrobial development.


Genome Announcements | 2017

Complete Genome and Plasmid Sequences of Staphylococcus aureus EDCC 5055 (DSM 28763), Used To Study Implant-Associated Infections

Gopala Krishna Mannala; Torsten Hain; Cathrin Spröer; Boyke Bunk; Jörg Overmann; Volker Alt; Eugen Domann

ABSTRACT Staphylococcus aureus EDCC 5055 (DSM 28763) is a human clinical wound isolate intensively used to study implant-associated infections in rabbit and rat infection models. Here, we report its complete genome sequence (2,794,437 bp) along with that of one plasmid (27,437 bp). This strain belongs to sequence type 8 and contains a mecA gene.

Collaboration


Dive into the Gopala Krishna Mannala's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge