Gregor Bieri
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gregor Bieri.
Nature | 2011
Saul A. Villeda; Jian Luo; Kira I. Mosher; Bende Zou; Markus Britschgi; Gregor Bieri; Trisha Stan; Nina Fainberg; Zhaoqing Ding; Alexander Eggel; Kurt M. Lucin; Eva Czirr; Jeong-Soo Park; Sebastien Couillard-Despres; Ludwig Aigner; Ge Li; Elaine R. Peskind; Jeffrey Kaye; Joseph F. Quinn; Douglas Galasko; Xinmin S. Xie; Thomas A. Rando; Tony Wyss-Coray
In the central nervous system, ageing results in a precipitous decline in adult neural stem/progenitor cells and neurogenesis, with concomitant impairments in cognitive functions. Interestingly, such impairments can be ameliorated through systemic perturbations such as exercise. Here, using heterochronic parabiosis we show that blood-borne factors present in the systemic milieu can inhibit or promote adult neurogenesis in an age-dependent fashion in mice. Accordingly, exposing a young mouse to an old systemic environment or to plasma from old mice decreased synaptic plasticity, and impaired contextual fear conditioning and spatial learning and memory. We identify chemokines—including CCL11 (also known as eotaxin)—the plasma levels of which correlate with reduced neurogenesis in heterochronic parabionts and aged mice, and the levels of which are increased in the plasma and cerebrospinal fluid of healthy ageing humans. Lastly, increasing peripheral CCL11 chemokine levels in vivo in young mice decreased adult neurogenesis and impaired learning and memory. Together our data indicate that the decline in neurogenesis and cognitive impairments observed during ageing can be in part attributed to changes in blood-borne factors.
Science | 2014
Erin M. Gibson; David Purger; Christopher Mount; Andrea K. Goldstein; Grant Lin; Lauren Wood; Ingrid Inema; Sarah Miller; Gregor Bieri; J. Bradley Zuchero; Ben A. Barres; Pamelyn Woo; Hannes Vogel; Michelle Monje
Introduction Myelin is formed by mature oligodendrocytes to facilitate fast propagation of action potentials in axons. Small changes in myelin thickness can confer substantial changes in conduction speed and may thus alter neural circuit function. The idea that active neurons may modulate myelination is supported by in vitro studies and correlations between experience and myelin microstructure, but direct in vivo evidence demonstrating that neuronal activity regulates oligodendrocyte precursor cell (OPC) proliferation, differentiation, or changes in myelin microstructure has been lacking. We use in vivo optogenetic techniques in awake, behaving mice to provide direct evidence that neuronal activity regulates changes in myelin-forming cells within an active circuit. Neuronal activity promotes OPC proliferation, oligodendrogenesis, and myelin remodeling. Optogenetic stimulation of unilateral premotor cortex layer V projection neurons in awake, behaving Thy1::ChR2 mice promotes OPC proliferation (light green cells, red EdU+ nuclei), oligodendrogenesis (newly generated, EdU-marked oligodendrocyte; dark green cell), and an increase in myelin sheath thickness (viewed in cross section, gray). Together with these adaptive myelin changes, motor performance of the correlate limb is improved during normal gait 4 weeks after premotor cortex stimulation. Rationale Demonstrating the direct effects of behaviorally relevant neuronal activity on oligodendroglial lineage cells in vivo has been a challenge because traditional methods of directly promoting neuronal activity involve placement of an electrode, and the resultant tissue injury and subsequent inflammation affects OPC dynamics. Optogenetic technology allows for in vivo control of neuronal firing with millisecond precision using light delivered at a distance from the target and, thus, avoids extensive electrode-related tissue damage. We used an optogenetic (Thy1::ChR2) mouse model in which 470-nm light delivered near the brain surface stimulates the excitatory opsin channelrhodopsin expressed by cortical layer V projection neurons. Wild-type littermate controls lacking channelrhodopsin were identically manipulated to control for effects of surgery, optical fiber placement, and light exposure. In Thy1::ChR2 mice, light stimulation delivered unilaterally to the premotor cortex elicits complex motor behavior (unidirectional ambulation). The thymidine analog 5-ethynyl-2′-deoxyuridine (EdU) was administered at the time of optogenetic stimulation to mark actively dividing cells. Animals were evaluated at various time points to examine the effects of neuronal activity on myelin-forming cells and myelin microstructure, as well as the functional consequences of neuronal activity–regulated myelin changes. Results Optogenetic stimulation of cortical layer V projection neurons resulted in robust proliferation of OPCs within the premotor circuit, from the deep layers of the premotor cortex to the subcortical projections through the corpus callosum. Four weeks later, an increase in newly generated oligodendrocytes and increased myelin sheath thickness were found within the stimulated premotor circuit. Behavioral testing revealed increased swing speed of the correlate forelimb. Pharmacological blockade of OPC differentiation prevented activity-regulated oligodendrogenesis and myelin changes, as well as the associated behavioral change. Conclusion Neuronal activity regulates OPC proliferation, differentiation, and myelin remodeling in the murine brain with accompanying changes in behavioral function. Taken together, these findings suggest that adaptive changes in myelin-forming cells represent a type of behaviorally relevant neural plasticity, raising numerous conceptual and mechanistic questions. Mechanisms regulating myelin plasticity may be important for adaptive neural function and could be leveraged for interventions in diseases of myelin. Conversely, dysregulated myelin plasticity could conceivably contribute to disease. On-Demand Activity Oligodendroglia ensheath axons in the brain with myelin, which provides the insulation that speeds up transmission of neuronal electrical impulses. The process of myelination in the human brain goes on for decades, concurrent with all manner of brain development and cognitive activity. Gibson et al. (p. 10.1126/science.1252304, published online 10 April; see the Perspective by Bechler and ffrench-Constant) used optogenetics to study myelination in response to neural activity. Electrical activity in the motor cortex of the brain of awake mice led to proliferation and differentiation of oligodendrocytes and consequently increased myelination and alterations in motor response. Optogenetic stimulation of the mouse motor cortex incites proliferation of myelin-producing cells and axonal myelination. [Also see Perspective by Bechler and ffrench-Constant] Myelination of the central nervous system requires the generation of functionally mature oligodendrocytes from oligodendrocyte precursor cells (OPCs). Electrically active neurons may influence OPC function and selectively instruct myelination of an active neural circuit. In this work, we use optogenetic stimulation of the premotor cortex in awake, behaving mice to demonstrate that neuronal activity elicits a mitogenic response of neural progenitor cells and OPCs, promotes oligodendrogenesis, and increases myelination within the deep layers of the premotor cortex and subcortical white matter. We further show that this neuronal activity–regulated oligodendrogenesis and myelination is associated with improved motor function of the corresponding limb. Oligodendrogenesis and myelination appear necessary for the observed functional improvement, as epigenetic blockade of oligodendrocyte differentiation and myelin changes prevents the activity-regulated behavioral improvement.
Nature Medicine | 2014
Saul A. Villeda; Kristopher E Plambeck; Jinte Middeldorp; Joseph M. Castellano; Kira I. Mosher; Jian Luo; Lucas K. Smith; Gregor Bieri; Karin Lin; Daniela Berdnik; Rafael Wabl; Joe Udeochu; Elizabeth G. Wheatley; Bende Zou; Danielle A. Simmons; Xinmin S. Xie; Frank M. Longo; Tony Wyss-Coray
As human lifespan increases, a greater fraction of the population is suffering from age-related cognitive impairments, making it important to elucidate a means to combat the effects of aging. Here we report that exposure of an aged animal to young blood can counteract and reverse pre-existing effects of brain aging at the molecular, structural, functional and cognitive level. Genome-wide microarray analysis of heterochronic parabionts—in which circulatory systems of young and aged animals are connected—identified synaptic plasticity–related transcriptional changes in the hippocampus of aged mice. Dendritic spine density of mature neurons increased and synaptic plasticity improved in the hippocampus of aged heterochronic parabionts. At the cognitive level, systemic administration of young blood plasma into aged mice improved age-related cognitive impairments in both contextual fear conditioning and spatial learning and memory. Structural and cognitive enhancements elicited by exposure to young blood are mediated, in part, by activation of the cyclic AMP response element binding protein (Creb) in the aged hippocampus. Our data indicate that exposure of aged mice to young blood late in life is capable of rejuvenating synaptic plasticity and improving cognitive function.
Nature Neuroscience | 2015
Ana Jovičić; Jerome Mertens; Steven Boeynaems; Elke Bogaert; Noori Chai; Shizuka Yamada; Joseph West Paul; Shuying Sun; Joseph R Herdy; Gregor Bieri; Nicholas J. Kramer; Fred H. Gage; Ludo Van Den Bosch; Wim Robberecht; Aaron D. Gitler
C9orf72 mutations are the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Dipeptide repeat proteins (DPRs) produced by unconventional translation of the C9orf72 repeat expansions cause neurodegeneration in cell culture and in animal models. We performed two unbiased screens in Saccharomyces cerevisiae and identified potent modifiers of DPR toxicity, including karyopherins and effectors of Ran-mediated nucleocytoplasmic transport, providing insight into potential disease mechanisms and therapeutic targets.C9orf72 mutations are the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Dipeptide repeat proteins (DPRs) produced by unconventional translation of the C9orf72 repeat expansions cause neurodegeneration in cell culture and in animal models. We performed two unbiased screens in Saccharomyces cerevisiae and identified potent modifiers of DPR toxicity, uncovering karyopherins and effectors of Ran-mediated nucleocytoplasmic transport, providing insight into potential disease mechanisms and therapeutic targets.
Nature Neuroscience | 2012
Kira I. Mosher; Robert H. Andres; Takeshi Fukuhara; Gregor Bieri; Maiko Hasegawa-Moriyama; Yingbo He; Raphael Guzman; Tony Wyss-Coray
We found mouse neural progenitor cells (NPCs) to have a secretory protein profile distinct from other brain cells and to modulate microglial activation, proliferation and phagocytosis. NPC-derived vascular endothelial growth factor was necessary and sufficient to exert at least some of these effects in mice. Thus, neural precursor cells may not only be shaped by microglia, but also regulate microglia functions and activity.
Nature Medicine | 2015
Lucas K. Smith; Yingbo He; Jeong-Soo Park; Gregor Bieri; Cedric E Snethlage; Karin Lin; Géraldine Gontier; Rafael Wabl; Kristopher E Plambeck; Joe Udeochu; Elizabeth G. Wheatley; Jill Bouchard; Alexander Eggel; Ramya Narasimha; Jacqueline L Grant; Jian Luo; Tony Wyss-Coray; Saul A. Villeda
Aging drives cognitive and regenerative impairments in the adult brain, increasing susceptibility to neurodegenerative disorders in healthy individuals. Experiments using heterochronic parabiosis, in which the circulatory systems of young and old animals are joined, indicate that circulating pro-aging factors in old blood drive aging phenotypes in the brain. Here we identify β2-microglobulin (B2M), a component of major histocompatibility complex class 1 (MHC I) molecules, as a circulating factor that negatively regulates cognitive and regenerative function in the adult hippocampus in an age-dependent manner. B2M is elevated in the blood of aging humans and mice, and it is increased within the hippocampus of aged mice and young heterochronic parabionts. Exogenous B2M injected systemically, or locally in the hippocampus, impairs hippocampal-dependent cognitive function and neurogenesis in young mice. The negative effects of B2M and heterochronic parabiosis are, in part, mitigated in the hippocampus of young transporter associated with antigen processing 1 (Tap1)-deficient mice with reduced cell surface expression of MHC I. The absence of endogenous B2M expression abrogates age-related cognitive decline and enhances neurogenesis in aged mice. Our data indicate that systemic B2M accumulation in aging blood promotes age-related cognitive dysfunction and impairs neurogenesis, in part via MHC I, suggesting that B2M may be targeted therapeutically in old age.
Nature | 2017
Lindsay A. Becker; Brenda Huang; Gregor Bieri; Rosanna K. Ma; David Knowles; Paymaan Jafar-Nejad; James Messing; Hong Joo Kim; Armand Soriano; Georg Auburger; Stefan M. Pulst; J. Paul Taylor; Frank Rigo; Aaron D. Gitler
Amyotrophic lateral sclerosis (ALS) is a rapidly progressing neurodegenerative disease that is characterized by motor neuron loss and that leads to paralysis and death 2–5 years after disease onset. Nearly all patients with ALS have aggregates of the RNA-binding protein TDP-43 in their brains and spinal cords, and rare mutations in the gene encoding TDP-43 can cause ALS. There are no effective TDP-43-directed therapies for ALS or related TDP-43 proteinopathies, such as frontotemporal dementia. Antisense oligonucleotides (ASOs) and RNA-interference approaches are emerging as attractive therapeutic strategies in neurological diseases. Indeed, treatment of a rat model of inherited ALS (caused by a mutation in Sod1) with ASOs against Sod1 has been shown to substantially slow disease progression. However, as SOD1 mutations account for only around 2–5% of ALS cases, additional therapeutic strategies are needed. Silencing TDP-43 itself is probably not appropriate, given its critical cellular functions. Here we present a promising alternative therapeutic strategy for ALS that involves targeting ataxin-2. A decrease in ataxin-2 suppresses TDP-43 toxicity in yeast and flies, and intermediate-length polyglutamine expansions in the ataxin-2 gene increase risk of ALS. We used two independent approaches to test whether decreasing ataxin-2 levels could mitigate disease in a mouse model of TDP-43 proteinopathy. First, we crossed ataxin-2 knockout mice with TDP-43 (also known as TARDBP) transgenic mice. The decrease in ataxin-2 reduced aggregation of TDP-43, markedly increased survival and improved motor function. Second, in a more therapeutically applicable approach, we administered ASOs targeting ataxin-2 to the central nervous system of TDP-43 transgenic mice. This single treatment markedly extended survival. Because TDP-43 aggregation is a component of nearly all cases of ALS, targeting ataxin-2 could represent a broadly effective therapeutic strategy.
The Journal of Neuroscience | 2014
Matthew D. Figley; Gregor Bieri; Regina-Maria Kolaitis; J. Paul Taylor; Aaron D. Gitler
Mutations in the PFN1 gene encoding profilin 1 are a rare cause of familial amyotrophic lateral sclerosis (ALS). Profilin 1 is a well studied actin-binding protein but how PFN1 mutations cause ALS is unknown. The budding yeast, Saccharomyces cerevisiae, has one PFN1 ortholog. We expressed the ALS-linked profilin 1 mutant proteins in yeast, demonstrating a loss of protein stability and failure to restore growth to profilin mutant cells, without exhibiting gain-of-function toxicity. This model provides for simple and rapid screening of novel ALS-linked PFN1 variants. To gain insight into potential novel roles for profilin 1, we performed an unbiased, genome-wide synthetic lethal screen with yeast cells lacking profilin (pfy1Δ). Unexpectedly, deletion of several stress granule and processing body genes, including pbp1Δ, were found to be synthetic lethal with pfy1Δ. Mutations in ATXN2, the human ortholog of PBP1, are a known ALS genetic risk factor and ataxin 2 is a stress granule component in mammalian cells. Given this genetic interaction and recent evidence linking stress granule dynamics to ALS pathogenesis, we hypothesized that profilin 1 might also associate with stress granules. Here we report that profilin 1 and related protein profilin 2 are novel stress granule-associated proteins in mouse primary cortical neurons and in human cell lines and that ALS-linked mutations in profilin 1 alter stress granule dynamics, providing further evidence for the potential role of stress granules in ALS pathogenesis.
Frontiers in Neurology | 2014
Jian Luo; Andy Nguyen; Saul A. Villeda; Hui Zhang; Zhaoqing Ding; Derek P. Lindsey; Gregor Bieri; Joseph M. Castellano; Gary S. Beaupre; Tony Wyss-Coray
Mild traumatic brain injury (mTBI, also referred to as concussion) accounts for the majority of all traumatic brain injuries. The consequences of repetitive mTBI have become of particular concern for individuals engaged in certain sports or in military operations. Many mTBI patients suffer long-lasting neurobehavioral impairments. In order to expedite pre-clinical research and therapy development, there is a need for animal models that reflect the long-term cognitive and pathological features seen in patients. In the present study, we developed and characterized a mouse model of repetitive mTBI, induced onto the closed head over the left frontal hemisphere with an electromagnetic stereotaxic impact device. Using GFAP-luciferase bioluminescence reporter mice that provide a readout of astrocyte activation, we observed an increase in bioluminescence relative to the force delivered by the impactor after single impact and cumulative effects of repetitive mTBI. Using the injury parameters established in the reporter mice, we induced a repetitive mTBI in wild-type C57BL/6J mice and characterized the long-term outcome. Animals received repetitive mTBI showed a significant impairment in spatial learning and memory when tested at 2 and 6 months after injury. A robust astrogliosis and increased p-Tau immunoreactivity were observed upon post-mortem pathological examinations. These findings are consistent with the deficits and pathology associated with mTBI in humans and support the use of this model to evaluate potential therapeutic approaches.
Acta Neuropathologica | 2016
Michel Brahic; Luc Bousset; Gregor Bieri; Ronald Melki; Aaron D. Gitler
Accruing evidence suggests that prion-like behavior of fibrillar forms of α-synuclein, β-amyloid peptide and mutant huntingtin are responsible for the spread of the lesions that characterize Parkinson disease, Alzheimer disease and Huntington disease, respectively. It is unknown whether these distinct protein assemblies are transported within and between neurons by similar or distinct mechanisms. It is also unclear if neuronal death or injury is required for neuron-to-neuron transfer. To address these questions, we used mouse primary cortical neurons grown in microfluidic devices to measure the amounts of α-synuclein, Aβ42 and HTTExon1 fibrils transported by axons in both directions (anterograde and retrograde), as well as to examine the mechanism of their release from axons after anterograde transport. We observed that the three fibrils were transported in both anterograde and retrograde directions but with strikingly different efficiencies. The amount of Aβ42 fibrils transported was ten times higher than that of the other two fibrils. HTTExon1 was efficiently transported in the retrograde direction but only marginally in the anterograde direction. Finally, using neurons from two distinct mutant mouse strains whose axons are highly resistant to neurodegeneration (WldS and Sarm1−/−), we found that the three different fibrils were secreted by axons after anterograde transport, in the absence of axonal lysis, indicating that trans-neuronal spread can occur in intact healthy neurons. In summary, fibrils of α-synuclein, Aβ42 and HTTExon1 are all transported in axons but in directions and amounts that are specific of each fibril. After anterograde transport, the three fibrils were secreted in the medium in the absence of axon lysis. Continuous secretion could play an important role in the spread of pathology between neurons but may be amenable to pharmacological intervention.