Gregory Malinowski
University of Lorraine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gregory Malinowski.
Nature Materials | 2014
S. Mangin; Matthias Gottwald; C-H. Lambert; Daniel Steil; V. Uhlíř; Lin Pang; M. Hehn; Sabine Alebrand; Mirko Cinchetti; Gregory Malinowski; Yeshaiahu Fainman; Martin Aeschlimann; Eric E. Fullerton
The possibility of manipulating magnetic systems without applied magnetic fields have attracted growing attention over the past fifteen years. The low-power manipulation of the magnetization, preferably at ultrashort timescales, has become a fundamental challenge with implications for future magnetic information memory and storage technologies. Here we explore the optical manipulation of the magnetization in engineered magnetic materials. We demonstrate that all-optical helicity-dependent switching (AO-HDS) can be observed not only in selected rare earth-transition metal (RE-TM) alloy films but also in a much broader variety of materials, including RE-TM alloys, multilayers and heterostructures. We further show that RE-free Co-Ir-based synthetic ferrimagnetic heterostructures designed to mimic the magnetic properties of RE-TM alloys also exhibit AO-HDS. These results challenge present theories of AO-HDS and provide a pathway to engineering materials for future applications based on all-optical control of magnetic order.
Science | 2014
Charles-Henri Lambert; S. Mangin; B. S. D. Ch. S. Varaprasad; Y. K. Takahashi; M. Hehn; Mirko Cinchetti; Gregory Malinowski; K. Hono; Yeshaiahu Fainman; Martin Aeschlimann; Eric E. Fullerton
All-optical magnetic state switching Magneto-optical memory storage media, such as hard drives, use magnetic fields to change the magnetization of memory bits, but the process is slow. Light can often reveal information about the magnetization state of a sample, such as its field direction. Lambert et al. show that under the right circumstances, light can also switch the magnetization state of a thin ferromagnetic film. Using light pulses instead of magnetic fields led to ultrafast data memory and data storage. Science, this issue p. 1337 The all-optical control of magnetization in thin ferromagnetic films is demonstrated. The interplay of light and magnetism allowed light to be used as a probe of magnetic materials. Now the focus has shifted to use polarized light to alter or manipulate magnetism. Here, we demonstrate optical control of ferromagnetic materials ranging from magnetic thin films to multilayers and even granular films being explored for ultra-high-density magnetic recording. Our finding shows that optical control of magnetic materials is a much more general phenomenon than previously assumed and may have a major impact on data memory and storage industries through the integration of optical control of ferromagnetic bits.
Applied Physics Letters | 2009
Gregory Malinowski; Kc Koen Kuiper; R Reinoud Lavrijsen; Hjm Henk Swagten; B Bert Koopmans
Time resolved magneto-optical Kerr measurements are carried out to study the precessional dynamics of ferromagnetic thin films with out-of-plane anisotropy. A combined analysis of parameters, such as coercive fields, magnetic anisotropy, and Gilbert damping α, is reported. Using a macrospin approximation and the Landau–Lifshitz–Gilbert equation, the effective anisotropy and α are obtained. A large damping varying with the applied field as well as with the thickness of the ferromagnetic layer is reported. Simulations using a distribution in the effective anisotropy allow us to reproduce the field evolution of α. Moreover, its thickness dependence correlates with the spin pumping effect.
Applied Physics Letters | 2010
Jan Heinen; Olivier Boulle; Kevin Rousseau; Gregory Malinowski; Mathias Kläui; Henk J. M. Swagten; B Bert Koopmans; C. Ulysse; G. Faini
We report on low temperature current induced domain wall depinning experiments on (Co/Pt) multilayer nanowires with perpendicular magnetization. Using a special experimental scheme, we are able to extract the different contributions of the Oersted field and spin torque from the dependence of the depinning field on the injected current for selected magnetization configurations. The spin torque contribution is found to be dominant with a small contribution of the Oersted field leading to a nonadiabaticity factor beta in line with previous measurements
Applied Physics Letters | 2016
M. S. El Hadri; Philipp Pirro; Charles-Henri Lambert; Nicolas Bergeard; Sébastien Petit-Watelot; M. Hehn; Gregory Malinowski; François Montaigne; Y. Quessab; R. Medapalli; Eric E. Fullerton; S. Mangin
We present an experimental study of all-optical helicity-dependent switching (AO-HDS) of ferromagnetic Pt/Co/Pt heterostructures with perpendicular magnetic anisotropy. The sample is patterned into a Hall cross and the AO-HDS is measured via the anomalous Hall effect. This all-electrical probing of the magnetization during AO-HDS enables a statistical quantification of the switching ratio for different laser parameters, such as the threshold power to achieve AO-HDS and the exposure time needed to reach complete switching at a given laser power. We find that the AO-HDS is a cumulative process, a certain number of optical pulses is needed to obtain a full and reproducible helicity-dependent switching. The deterministic switching of the ferromagnetic Pt/Co/Pt Hall cross provides a full “opto-spintronic device,” where the remanent magnetization can be all-optically and reproducibly written and erased without the need of an external magnetic field.
Scientific Reports | 2016
Boris Vodungbo; Bahrati Tudu; Jonathan Perron; Renaud Delaunay; L. Müller; M. H. Berntsen; G. Grübel; Gregory Malinowski; Christian Weier; J. Gautier; Guillaume Lambert; Philippe Zeitoun; C. Gutt; Emmanuelle Jal; A. H. Reid; Patrick Granitzka; N. Jaouen; Georgi L. Dakovski; Stefan Moeller; Michael P. Minitti; Ankush Mitra; S. Carron; Bastian Pfau; Clemens von Korff Schmising; Michael D. Schneider; S. Eisebitt; Jan Lüning
Does the excitation of ultrafast magnetization require direct interaction between the photons of the optical pump pulse and the magnetic layer? Here, we demonstrate unambiguously that this is not the case. For this we have studied the magnetization dynamics of a ferromagnetic cobalt/palladium multilayer capped by an IR-opaque aluminum layer. Upon excitation with an intense femtosecond-short IR laser pulse, the film exhibits the classical ultrafast demagnetization phenomenon although only a negligible number of IR photons penetrate the aluminum layer. In comparison with an uncapped cobalt/palladium reference film, the initial demagnetization of the capped film occurs with a delayed onset and at a slower rate. Both observations are qualitatively in line with energy transport from the aluminum layer into the underlying magnetic film by the excited, hot electrons of the aluminum film. Our data thus confirm recent theoretical predictions.
Applied Physics Letters | 2010
R Reinoud Lavrijsen; Gregory Malinowski; Jh Jeroen Franken; Jt Jürgen Kohlhepp; Hjm Henk Swagten; B Bert Koopmans; M. Czapkiewicz; Tomasz Stobiecki
We have studied the magnetization reversal process in perpendicularly magnetized ultrathin Pt/Co100−xBx/Pt films by means of magneto-optical magnetometry and microscopy. The addition of boron enhances the effective Barkhausen volume indicating a decrease in domain-wall pinning site density and/or strength. This potentially reduces the field and critical current-density for domain-wall depinning/motion, indicating that perpendicularly magnetized Pt/Co100−xBx/Pt could be an interesting candidate for domain-wall motion studies and applications.
Advanced Materials | 2017
Yong Xu; Marwan Deb; Gregory Malinowski; M. Hehn; Weisheng Zhao; S. Mangin
Current-induced magnetization manipulation is a key issue for spintronic applications. This manipulation must be fast, deterministic, and nondestructive in order to function in device applications. Therefore, single- electronic-pulse-driven deterministic switching of the magnetization on the picosecond timescale represents a major step toward future developments of ultrafast spintronic systems. Here, the ultrafast magnetization dynamics in engineered Gdx [FeCo]1-x -based structures are studied to compare the effect of femtosecond laser and hot-electron pulses. It is demonstrated that a single femtosecond hot-electron pulse causes deterministic magnetization reversal in either Gd-rich and FeCo-rich alloys similarly to a femtosecond laser pulse. In addition, it is shown that the limiting factor of such manipulation for perpendicular magnetized films arises from the formation of a multidomain state due to dipolar interactions. By performing time-resolved measurements under various magnetic fields, it is demonstrated that the same magnetization dynamics are observed for both light and hot-electron excitation, and that the full magnetization reversal takes place within 40 ps. The efficiency of the ultrafast current-induced magnetization manipulation is enhanced due to the ballistic transport of hot electrons before reaching the GdFeCo magnetic layer.
Journal of Physics D | 2007
Ildico L. Guhr; S. van Dijken; Gregory Malinowski; Peter Fischer; F. Springer; O. Hellwig; M. Albrecht
Arrays of self-assembled polystyrene spheres with various particle sizes have been used as a substrate to study the exchange bias effect along the out-of-plane direction of Pt/Co multilayers capped with IrMn layers. The evolution of the reversal process of the resulting magnetic nanocaps was investigated by magnetic force microscopy (MFM) and magnetic transmission x-ray microscopy (M-TXM). Tip?sample interaction-induced irreversible and reversible switching events have been observed during multiple scanning cycles in MFM imaging which are ascribed to the so-called training effect. During M-TXM imaging a drastic change in morphology has been found due to the x-ray exposure, leading to the formation of much larger spherical particles. Interestingly, these merged particles reveal again an exchange coupled single-domain magnetic cap with magnetic behaviour similar to magnetic films deposited directly on spheres of similar size.
Journal of Applied Physics | 2009
Olivier Boulle; Lutz Heyne; Jan Rhensius; Mathias Kläui; Ulrich Rüdiger; Loïc Joly; L. Le Guyader; F. Nolting; L. J. Heyderman; Gregory Malinowski; H. J. M. Swagten; B Bert Koopmans; C. Ulysse; G. Faini
The influence of current pulses on the domain structure of a 2μm wide wire composed of a soft out-of-plane magnetized magnetic material is studied by high spatial resolution nonintrusive magnetic imaging. The injection of current pulses (1012A∕m2) leads to stable magnetic states composed of two domains with opposite magnetization direction separated by a domain wall parallel to the wire. The direction of the magnetization in the domains is reversed back and forth by applying successive current pulses with opposite polarity. The formation and control of the domain states by the current is attributed to the effect of the Oersted field, which is calculated to be large enough to induce the switching.