Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gregory S. Snider is active.

Publication


Featured researches published by Gregory S. Snider.


Nature | 2008

The missing memristor found

Dmitri B. Strukov; Gregory S. Snider; Duncan Stewart; R. Stanley Williams

Anyone who ever took an electronics laboratory class will be familiar with the fundamental passive circuit elements: the resistor, the capacitor and the inductor. However, in 1971 Leon Chua reasoned from symmetry arguments that there should be a fourth fundamental element, which he called a memristor (short for memory resistor). Although he showed that such an element has many interesting and valuable circuit properties, until now no one has presented either a useful physical model or an example of a memristor. Here we show, using a simple analytical example, that memristance arises naturally in nanoscale systems in which solid-state electronic and ionic transport are coupled under an external bias voltage. These results serve as the foundation for understanding a wide range of hysteretic current–voltage behaviour observed in many nanoscale electronic devices that involve the motion of charged atomic or molecular species, in particular certain titanium dioxide cross-point switches.


Nature | 2010

'Memristive' switches enable 'stateful' logic operations via material implication.

Julien Borghetti; Gregory S. Snider; Philip J. Kuekes; Jianhua Yang; Duncan Stewart; R. Stanley Williams

The authors of the International Technology Roadmap for Semiconductors—the industry consensus set of goals established for advancing silicon integrated circuit technology—have challenged the computing research community to find new physical state variables (other than charge or voltage), new devices, and new architectures that offer memory and logic functions beyond those available with standard transistors. Recently, ultra-dense resistive memory arrays built from various two-terminal semiconductor or insulator thin film devices have been demonstrated. Among these, bipolar voltage-actuated switches have been identified as physical realizations of ‘memristors’ or memristive devices, combining the electrical properties of a memory element and a resistor. Such devices were first hypothesized by Chua in 1971 (ref. 15), and are characterized by one or more state variables that define the resistance of the switch depending upon its voltage history. Here we show that this family of nonlinear dynamical memory devices can also be used for logic operations: we demonstrate that they can execute material implication (IMP), which is a fundamental Boolean logic operation on two variables p and q such that pIMPq is equivalent to (NOTp)ORq. Incorporated within an appropriate circuit, memristive switches can thus perform ‘stateful’ logic operations for which the same devices serve simultaneously as gates (logic) and latches (memory) that use resistance instead of voltage or charge as the physical state variable.


Journal of Applied Physics | 2009

Switching dynamics in titanium dioxide memristive devices

Matthew D. Pickett; Dmitri B. Strukov; Julien Borghetti; Jianhua Yang; Gregory S. Snider; Duncan Stewart; R. Stanley Williams

Memristive devices are promising components for nanoelectronics with applications in nonvolatile memory and storage, defect-tolerant circuitry, and neuromorphic computing. Bipolar resistive switches based on metal oxides such as TiO2 have been identified as memristive devices primarily based on the “pinched hysteresis loop” that is observed in their current-voltage (i-v) characteristics. Here we show that the mathematical definition of a memristive device provides the framework for understanding the physical processes involved in bipolar switching and also yields formulas that can be used to compute and predict important electrical and dynamical properties of the device. We applied an electrical characterization and state-evolution procedure in order to capture the switching dynamics of a device and correlate the response with models for the drift diffusion of ionized dopants (vacancies) in the oxide film. The analysis revealed a notable property of nonlinear memristors: the energy required to switch a me...


Nano Letters | 2009

Memristor-CMOS hybrid integrated circuits for reconfigurable logic

Qiangfei Xia; Warren Robinett; Michael W. Cumbie; Neel Banerjee; Thomas J. Cardinali; Jianhua Yang; Wei Wu; Xuema Li; William M. Tong; Dmitri B. Strukov; Gregory S. Snider; Gilberto Medeiros-Ribeiro; R. Stanley Williams

Hybrid reconfigurable logic circuits were fabricated by integrating memristor-based crossbars onto a foundry-built CMOS (complementary metal-oxide-semiconductor) platform using nanoimprint lithography, as well as materials and processes that were compatible with the CMOS. Titanium dioxide thin-film memristors served as the configuration bits and switches in a data routing network and were connected to gate-level CMOS components that acted as logic elements, in a manner similar to a field programmable gate array. We analyzed the chips using a purpose-built testing system, and demonstrated the ability to configure individual devices, use them to wire up various logic gates and a flip-flop, and then reconfigure devices.


Nanotechnology | 2007

Nano/CMOS architectures using a field-programmable nanowire interconnect

Gregory S. Snider; R. Stanley Williams

A field-programmable nanowire interconnect (FPNI) enables a family of hybrid nano/CMOS circuit architectures that generalizes the CMOL (CMOS/molecular hybrid) approach proposed by Strukov and Likharev, allowing for simpler fabrication, more conservative process parameters, and greater flexibility in the choice of nanoscale devices. The FPNI improves on a field-programmable gate array (FPGA) architecture by lifting the configuration bit and associated components out of the semiconductor plane and replacing them in the interconnect with nonvolatile switches, which decreases both the area and power consumption of the circuit. This is an example of a more comprehensive strategy for improving the efficiency of existing semiconductor technology: placing a level of intelligence and configurability in the interconnect can have a profound effect on integrated circuit performance, and can be used to significantly extend Moores law without having to shrink the transistors. Compilation of standard benchmark circuits onto FPNI chip models shows reduced area (8 × to 25 ×), reduced power, slightly lower clock speeds, and high defect tolerance—an FPNI chip with 20% defective junctions and 20% broken nanowires has an effective yield of 75% with no significant slowdown along the critical path, compared to a defect-free chip. Simulations show that the density and power improvements continue as both CMOS and nano fabrication parameters scale down, although the maximum clock rate decreases due to the high resistance of very small (<10 nm) metallic nanowires.


international symposium on nanoscale architectures | 2008

Spike-timing-dependent learning in memristive nanodevices

Gregory S. Snider

The neuromorphic paradigm is attractive for nanoscale computation because of its massive parallelism, potential scalability, and inherent defect-, fault-, and failure-tolerance. We show how to implement timing-based learning laws, such as spike-timing-dependent plasticity (STDP), in simple, memristive nanodevices, such as those constructed from certain metal oxides. Such nano-scale ldquosynapsesrdquo can be combined with CMOS ldquoneuronsrdquo to create neuromorphic hardware several orders of magnitude denser than is possible in conventional CMOS. The key ideas are: (1) to factor out two synaptic state variables to pre- and post-synaptic neurons; and (2) to separate computational communication from learning by time-division multiplexing of pulse-width-modulated signals through synapses. This approach offers the advantages of: better control over power dissipation; fewer constraints on the design of memristive materials used for nanoscale synapses; learning dynamics can be dynamically turned on or off (e.g. by attentional priming mechanisms communicated extra-synaptically); greater control over the precise form and timing of the STDP equations; the ability to implement a variety of other learning laws besides STDP; better circuit diversity since the approach allows different learning laws to be implemented in different areas of a single chip using the same memristive material for all synapses.


Nanotechnology | 2010

A memristor-based nonvolatile latch circuit

Warren Robinett; Matthew D. Pickett; Julien Borghetti; Qiangfei Xia; Gregory S. Snider; Gilberto Medeiros-Ribeiro; R. Stanley Williams

Memristive devices, which exhibit a dynamical conductance state that depends on the excitation history, can be used as nonvolatile memory elements by storing information as different conductance states. We describe the implementation of a nonvolatile synchronous flip-flop circuit that uses a nanoscale memristive device as the nonvolatile memory element. Controlled testing of the circuit demonstrated successful state storage and restoration, with an error rate of 0.1%, during 1000 power loss events. These results indicate that integration of digital logic devices and memristors could open the way for nonvolatile computation with applications in small platforms that rely on intermittent power sources. This demonstrated feasibility of tight integration of memristors with CMOS (complementary metal-oxide-semiconductor) circuitry challenges the traditional memory hierarchy, in which nonvolatile memory is only available as a large, slow, monolithic block at the bottom of the hierarchy. In contrast, the nonvolatile, memristor-based memory cell can be fast, fine-grained and small, and is compatible with conventional CMOS electronics. This threatens to upset the traditional memory hierarchy, and may open up new architectural possibilities beyond it.


international symposium on circuits and systems | 2010

Hybrid CMOS/memristor circuits

Dmitri B. Strukov; Duncan Stewart; Julien Borghetti; Xuema Li; Matthew D. Pickett; G. Medeiros Ribeiro; Warren Robinett; Gregory S. Snider; John Paul Strachan; Wei Wu; Qiangfei Xia; Jianhua Yang; R.S. Williams

This is a brief review of recent work on the prospective hybrid CMOS/memristor circuits. Such hybrids combine the flexibility, reliability and high functionality of the CMOS subsystem with very high density of nanoscale thin film resistance switching devices operating on different physical principles. Simulation and initial experimental results demonstrate that performance of CMOS/memristor circuits for several important applications is well beyond scaling limits of conventional VLSI paradigm.


Nanotechnology | 2006

Resistor-logic demultiplexers for nanoelectronics based on constant-weight codes

Philip J. Kuekes; Warren Robinett; Ron M. Roth; Gadiel Seroussi; Gregory S. Snider; R. Stanley Williams

The voltage margin of a resistor-logic demultiplexer can be improved significantly by basing its connection pattern on a constant-weight code. Each distinct code determines a unique demultiplexer, and therefore a large family of circuits is defined. We consider using these demultiplexers for building nanoscale crossbar memories, and determine the voltage margin of the memory system based on a particular code. We determine a purely code-theoretic criterion for selecting codes that will yield memories with large voltage margins, which is to minimize the ratio of the maximum to the minimum Hamming distance between distinct codewords. For the specific example of a 64 × 64 crossbar, we discuss what codes provide optimal performance for a memory.


Communications of The ACM | 2007

Computing with a trillion crummy components

Warren Robinett; Gregory S. Snider; Philip J. Kuekes; R. Stanley Williams

Attempting to build nanometer-scale circuits that are both defect- and fault-tolerant.

Collaboration


Dive into the Gregory S. Snider's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Duncan Stewart

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Wu

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Jianhua Yang

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge