Magdalena Tertil
Jagiellonian University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Magdalena Tertil.
Antioxidants & Redox Signaling | 2013
Klaudia Skrzypek; Magdalena Tertil; Slawomir Golda; Maciej Ciesla; Kazimierz Weglarczyk; Guillaume Collet; Alan Guichard; Magdalena Kozakowska; Jorge Boczkowski; Halina Was; Tomasz Gil; Jarosław Kużdżał; Lucie Muchova; Libor Vitek; Agnieszka Loboda; Alicja Jozkowicz; Claudine Kieda; Jozef Dulak
AIMS Heme oxygenase-1 (HO-1, HMOX1) can prevent tumor initiation; while in various tumors, it has been demonstrated to promote growth, angiogenesis, and metastasis. Here, we investigated whether HMOX1 can modulate microRNAs (miRNAs) and regulate human non-small cell lung carcinoma (NSCLC) development. RESULTS Stable HMOX1 overexpression in NSCLC NCI-H292 cells up-regulated tumor-suppressive miRNAs, whereas it significantly diminished the expression of oncomirs and angiomirs. The most potently down-regulated was miR-378. HMOX1 also up-regulated p53, down-regulated angiopoietin-1 (Ang-1) and mucin-5AC (MUC5AC), reduced proliferation, migration, and diminished angiogenic potential. Carbon monoxide was a mediator of HMOX1 effects on proliferation, migration, and miR-378 expression. In contrast, stable miR-378 overexpression decreased HMOX1 and p53; while enhanced expression of MUC5AC, vascular endothelial growth factor (VEGF), interleukin-8 (IL-8), and Ang-1, and consequently increased proliferation, migration, and stimulation of endothelial cells. Adenoviral delivery of HMOX1 reversed miR-378 effect on the proliferation and migration of cancer cells. In vivo, HMOX1 overexpressing tumors were smaller, less vascularized and oxygenated, and less metastatic. Overexpression of miR-378 exerted opposite effects. Accordingly, in patients with NSCLC, HMOX1 expression was lower in metastases to lymph nodes than in primary tumors. INNOVATION AND CONCLUSION In vitro and in vivo data indicate that the interplay between HMOX1 and miR-378 significantly modulates NSCLC progression and angiogenesis, suggesting miR-378 as a new therapeutic target. REBOUND TRACK: This work was rejected during standard peer review and rescued by Rebound Peer Review (Antioxid Redox Signal 16, 293-296, 2012) with the following serving as open reviewers: James F. George, Mahin D. Maines, Justin C. Mason, and Yasufumi Sato.
Free Radical Biology and Medicine | 2011
Urszula Florczyk; Szymon Czauderna; Anna Stachurska; Magdalena Tertil; Witold Nowak; Magdalena Kozakowska; Lorenz Poellinger; Alicja Jozkowicz; Agnieszka Loboda; Jozef Dulak
Recently we have shown that hypoxia as well as overexpression of the stable form of hypoxia-inducible factor-1α (HIF-1α) diminished the expression of interleukin-8 (IL-8) by inhibition of the Nrf2 transcription factor in HMEC-1 cells. Because HIF isoforms may exert different effects, we aimed to examine the influence of HIF-2α on IL-8 expression in endothelial cells. In contrast to HIF-1α, overexpression of HIF-2α obtained by adenoviral transduction resulted in increased expression of IL-8 in an Nrf2-independent way. Importantly, HIF-2α augmented the activity of SP-1, a transcription factor involved in IL-8 regulation and known coactivator of c-Myc. Additionally, HIF-1 decreased, whereas HIF-2 increased, c-Myc expression, and silencing of Mxi-1, a c-Myc antagonist, restored IL-8 expression downregulated by HIF-1α or hypoxia. Accordingly, binding of c-Myc to the IL-8 promoter was abolished in hypoxia. Importantly, both severe (0.5% O2) and mild (5% O2) hypoxia diminished IL-8 expression despite the stabilization of both HIF-1 and HIF-2. This study reveals the opposite roles of HIF-1α and HIF-2α in the regulation of IL-8 expression in endothelial cells. However, despite stabilization of both isoforms in hypoxia the effect of HIF-1 is predominant, and downregulation of IL-8 expression in hypoxia is caused by attenuation of Nrf2 and c-Myc.
Current Pharmaceutical Design | 2010
Magdalena Tertil; Alicja Jozkowicz; Jozef Dulak
Historically, oxidative stress was recognized to contribute to cancer development uniquely by induction of genomic instability. However, recent research has provided multiple evidence that reactive oxygen species and other free radicals, such as nitric oxide, often produced at elevated levels within tumor tissue, may function as signaling molecules that initiate and/or modulate the different regulatory pathways involved in tumorigenesis and metastasis. This review will focus on the complex role of oxidative stress and redox signaling in cancer neovascularization, a process without which the tumor is unable to grow beyond few millimeters in size. Reactive oxygen species and nitric oxide affect cell responses to hypoxia, a major trigger of angiogenic switch in tumors and are important upstream regulators as well as downstream mediators of action of the most potent proangiogenic factor - vascular endothelial growth factor. We will discuss targeting the redox-regulated mechanisms for antiangiogenic anticancer therapy and focus on recent developments in small-molecule agents that have either completed clinical trials or show a great promise to be subjected to them. Modulation of redox species production, signaling and metabolism and/or manipulating cellular antioxidant responses represents a multitargeted therapeutic approach which may possibly overcome the limitations of single-agent antiangiogenic treatments and potentiate effects of standard methods.
Antioxidants & Redox Signaling | 2014
Anna Grochot-Przeczek; Jerzy Kotlinowski; Magdalena Kozakowska; Katarzyna Starowicz; Jolanta Jagodzinska; Anna Stachurska; Oscar L. Volger; Karolina Bukowska-Strakova; Urszula Florczyk; Magdalena Tertil; Agnieszka Jazwa; Krzysztof Szade; Jacek Stepniewski; Agnieszka Loboda; Anton J.G. Horrevoets; Jozef Dulak; Alicja Jozkowicz
AIMS Heme oxygenase-1 (HO-1) is a cytoprotective enzyme that can be down-regulated in diabetes. Its importance for mature endothelium has been described, but its role in proangiogenic progenitors is not well known. We investigated the effect of HO-1 on the angiogenic potential of bone marrow-derived cells (BMDCs) and on blood flow recovery in ischemic muscle of diabetic mice. RESULTS Lack of HO-1 decreased the number of endothelial progenitor cells (Lin(-)CD45(-)cKit(-)Sca-1(+)VEGFR-2(+)) in murine bone marrow, and inhibited the angiogenic potential of cultured BMDCs, affecting their survival under oxidative stress, proliferation, migration, formation of capillaries, and paracrine proangiogenic potential. Transcriptome analysis of HO-1(-/-) BMDCs revealed the attenuated up-regulation of proangiogenic genes in response to hypoxia. Heterozygous HO-1(+/-) diabetic mice subjected to hind limb ischemia exhibited reduced local expression of vascular endothelial growth factor (VEGF), placental growth factor (PlGF), stromal cell-derived factor 1 (SDF-1), VEGFR-1, VEGFR-2, and CXCR-4. This was accompanied by impaired revascularization of ischemic muscle, despite a strong mobilization of bone marrow-derived proangiogenic progenitors (Sca-1(+)CXCR-4(+)) into peripheral blood. Blood flow recovery could be rescued by local injections of conditioned media harvested from BMDCs, but not by an injection of cultured BMDCs. INNOVATION This is the first report showing that HO-1 haploinsufficiency impairs tissue revascularization in diabetes and that proangiogenic in situ response, not progenitor cell mobilization, is important for blood flow recovery. CONCLUSIONS HO-1 is necessary for a proper proangiogenic function of BMDCs. A low level of HO-1 in hyperglycemic mice decreases restoration of perfusion in ischemic muscle, which can be rescued by a local injection of conditioned media from cultured BMDCs.
Molecular Cancer Therapeutics | 2014
Guillaume Collet; Nathalie Lamerant-Fayel; Magdalena Tertil; Bouchra El Hafny-Rahbi; Jacek Stepniewski; Alan Guichard; Alexandra Foucault-Collet; Krzysztof Klimkiewicz; Stéphane Petoud; Agata Matejuk; Catherine Grillon; Alicja Jozkowicz; Jozef Dulak; Claudine Kieda
VEGFs are found at high levels in hypoxic tumors. As major components directing pathologic neovascularization, they regulate stromal reactions. Consequently, novel strategies targeting and inhibiting VEGF overproduction upon hypoxia offer considerable potential for modern anticancer therapies controlling rather than destroying tumor angiogenesis. Here, we report the design of a vector expressing the soluble form of VEGF receptor-2 (sVEGFR2) driven by a hypoxia-responsive element (HRE)-regulated promoter. To enable in vivo imaging by infrared visualization, mCherry and IFP1.4 coding sequences were built into the vector. Plasmid construction was validated through transfection into embryonic human kidney HEK293 and murine B16F10 melanoma cells. sVEGFR2 was expressed in hypoxic conditions only, confirming that the gene was regulated by the HRE promoter. sVEGFR2 was found to bind efficiently and specifically to murine and human VEGF-A, reducing the growth of tumor and endothelial cells as well as impacting angiogenesis in vitro. The hypoxia-conditioned sVEGFR2 expression was shown to be functional in vivo: Tumor angiogenesis was inhibited and, on stable transfection of B16F10 melanoma cells, tumor growth was reduced. Enhanced expression of sVEGFR2 was accompanied by a modulation in levels of VEGF-A. The resulting balance reflected the effect on tumor growth and on control of angiogenesis. A concomitant increase of intratumor oxygen tension also suggested an influence on vessel normalization. The possibility to express an angiogenesis regulator as sVEGFR2, in a hypoxia-conditioned manner, significantly opens new strategies for tumor vessel–controlled normalization and the design of adjuvants for combined cancer therapies. Mol Cancer Ther; 13(1); 165–78. ©2013 AACR.
Free Radical Biology and Medicine | 2015
Magdalena Tertil; Slawomir Golda; Klaudia Skrzypek; Urszula Florczyk; Kazimierz Weglarczyk; Jerzy Kotlinowski; Monika Maleszewska; Szymon Czauderna; Chantal Pichon; Claudine Kieda; Alicja Jozkowicz; Jozef Dulak
Lung mucoepidermoid carcinoma (MEC) is a very poorly characterized rare subtype of non-small-cell lung cancer (NSCLC) associated with more favorable prognoses than other forms of intrathoracic malignancies. We have previously identified that heme oxygenase-1 (HO-1, encoded by HMOX1) inhibits MEC tumor growth and modulates the transcriptome of microRNAs. Here we investigate the role of a major upstream regulator of HO-1 and a master regulator of cellular antioxidant responses, transcription factor Nrf2, in MEC biology. Nrf2 overexpression in the NCI-H292 MEC cell line mimicked the phenotype of HO-1 overexpressing cells, leading to inhibition of cell proliferation and migration and down-regulation of oncogenic miR-378. HMOX1 silencing identified HO-1 as a major mediator of Nrf2 action. Nrf2- and HO-1 overexpressing cells exhibited strongly diminished expression of multiple matrix metalloproteinases and inflammatory cytokine interleukin-1β, which was confirmed in an NCI-HO-1 xenograft model. Overexpression of HO-1 altered not only human MMP levels in tumor cells but also murine MMP levels within tumor microenvironment and metastatic niche. This could possibly contribute to decreased metastasis to the lungs and inhibitory effects of HO-1 on MEC tumor growth. Our profound transcriptome analysis and molecular characterization of the mucoepidermoid lung carcinoma helps to understand the specific clinical presentations of these tumors, emphasizing a unique antitumoral role of the Nrf2-HO-1 axis.
PLOS ONE | 2014
Magdalena Tertil; Klaudia Skrzypek; Urszula Florczyk; Kazimierz Weglarczyk; Halina Was; Guillaume Collet; Alan Guichard; Tomasz Gil; Jarosław Kużdżał; Alicja Jozkowicz; Claudine Kieda; Chantal Pichon; Jozef Dulak
Proangiogenic enzyme thymidine phosphorylase (TP) is a promising target for anticancer therapy, yet its action in non-small cell lung carcinoma (NSCLC) is not fully understood. To elucidate its role in NSCLC tumor growth, NCI-H292 lung mucoepidermoid carcinoma cells and endothelial cells were engineered to overexpress TP by viral vector transduction. NSCLC cells with altered expression of transcription factor Nrf2 or its target gene heme oxygenase-1 (HO-1) were used to study the regulation of TP and the findings from pre-clinical models were related to gene expression data from clinical NSCLC specimens. Overexpression of Nrf2 or HO-1 resulted in upregulation of TP in NCI-H292 cells, an effect mimicked by treatment with an antioxidant N-acetylcysteine and partially reversed by HO-1 knockdown. Overexpression of TP attenuated cell proliferation and migration in vitro, but simultaneously enhanced angiogenic potential of cancer cells supplemented with thymidine. The latter was also observed for SK-MES-1 squamous cell carcinoma and NCI-H460 large cell carcinoma cells. TP-overexpressing NCI-H292 tumors in vivo exhibited better oxygenation and higher expression of IL-8, IL-1β and IL-6. TP overexpression in endothelial cells augmented their angiogenic properties which was associated with enhanced generation of HO-1 and VEGF. Correlation of TP with the expression of HO-1 and inflammatory cytokines was confirmed in clinical samples of NSCLC. Altogether, the increased expression of IL-1β and IL-6 together with proangiogenic effects of TP-expressing NSCLC on endothelium can contribute to tumor growth, implying TP as a target for antiangiogenesis in NSCLC.
Archive | 2013
Magdalena Tertil; Klaudia Skrzypek; Agnieszka Łoboda
Growing tumor needs to be supplied with oxygen and nutrients; hence, the mechanisms responsible for development of new blood vessels are crucial for tumor progression. Enhanced expression of proangiogenic factors enables development of tumor vasculature and subsequent invasion of tumor cells. The key step in these events is decreased oxygen tension within the growing tumor due to limited oxygen diffusion within the tissue. Apart from canonical hypoxic signaling, there are numerous molecular pathways that may modulate angiogenic secretome of cancer cells, such as the action of angiogenic enzymes and microRNAs. Besides tumor cells, also other cellular components of tumor microenvironment play an important role in stimulation of endothelium, out of which the key players are different populations of bone marrow-derived cells of myeloid origin.
Vascular Pharmacology | 2012
Urszula Florczyk; Szymon Czauderna; Anna Stachurska; Magdalena Tertil; Magdalena Kozakowska; Lorenz Poellinger; Alicja Jozkowicz; Agnieszka Loboda; Jozef Dulak
Vascular Pharmacology | 2012
Magdalena Tertil; Klaudia Skrzypek; Kazimierz Weglarczyk; Chantal Pichon; Claudine Kieda; Halina Was; Alicja Jozkowicz; Jozef Dulak