Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hao Ye is active.

Publication


Featured researches published by Hao Ye.


Chemical Research in Toxicology | 2015

Estrogenic Activity Data Extraction and in Silico Prediction Show the Endocrine Disruption Potential of Bisphenol A Replacement Compounds

Hui Wen Ng; Mao Shu; Heng Luo; Hao Ye; Weigong Ge; Roger Perkins; Weida Tong; Huixiao Hong

Bisphenol A (BPA) replacement compounds are released to the environment and cause widespread human exposure. However, a lack of thorough safety evaluations on the BPA replacement compounds has raised public concerns. We assessed the endocrine disruption potential of BPA replacement compounds in the market to assist their safety evaluations. A literature search was conducted to ascertain the BPA replacement compounds in use. Available experimental estrogenic activity data of these compounds were extracted from the Estrogenic Activity Database (EADB) to assess their estrogenic potential. An in silico model was developed to predict the estrogenic activity of compounds lacking experimental data. Molecular dynamics (MD) simulations were performed to understand the mechanisms by which the estrogenic compounds bind to and activate the estrogen receptor (ER). Forty-five BPA replacement compounds were identified in the literature. Seven were more estrogenic and five less estrogenic than BPA, while six were nonestrogenic in EADB. A two-tier in silico model was developed based on molecular docking to predict the estrogenic activity of the 27 compounds lacking data. Eleven were predicted as ER binders and 16 as nonbinders. MD simulations revealed hydrophobic contacts and hydrogen bonds as the main interactions between ER and the estrogenic compounds.


Chemical Research in Toxicology | 2015

Development and Validation of Decision Forest Model for Estrogen Receptor Binding Prediction of Chemicals Using Large Data Sets.

Hui Wen Ng; Stephen W. Doughty; Heng Luo; Hao Ye; Weigong Ge; Weida Tong; Huixiao Hong

Some chemicals in the environment possess the potential to interact with the endocrine system in the human body. Multiple receptors are involved in the endocrine system; estrogen receptor α (ERα) plays very important roles in endocrine activity and is the most studied receptor. Understanding and predicting estrogenic activity of chemicals facilitates the evaluation of their endocrine activity. Hence, we have developed a decision forest classification model to predict chemical binding to ERα using a large training data set of 3308 chemicals obtained from the U.S. Food and Drug Administrations Estrogenic Activity Database. We tested the model using cross validations and external data sets of 1641 chemicals obtained from the U.S. Environmental Protection Agencys ToxCast project. The model showed good performance in both internal (92% accuracy) and external validations (∼ 70-89% relative balanced accuracies), where the latter involved the validations of the model across different ER pathway-related assays in ToxCast. The important features that contribute to the prediction ability of the model were identified through informative descriptor analysis and were related to current knowledge of ER binding. Prediction confidence analysis revealed that the model had both high prediction confidence and accuracy for most predicted chemicals. The results demonstrated that the model constructed based on the large training data set is more accurate and robust for predicting ER binding of chemicals than the published models that have been developed using much smaller data sets. The model could be useful for the evaluation of ERα-mediated endocrine activity potential of environmental chemicals.


Bioinformatics and Biology Insights | 2015

Machine Learning Methods for Predicting HLA–Peptide Binding Activity

Heng Luo; Hao Ye; Hui Wen Ng; Lemming Shi; Weida Tong; Donna L. Mendrick; Huixiao Hong

As major histocompatibility complexes in humans, the human leukocyte antigens (HLAs) have important functions to present antigen peptides onto T-cell receptors for immunological recognition and responses. Interpreting and predicting HLA-peptide binding are important to study T-cell epitopes, immune reactions, and the mechanisms of adverse drug reactions. We review different types of machine learning methods and tools that have been used for HLA-peptide binding prediction. We also summarize the descriptors based on which the HLA-peptide binding prediction models have been constructed and discuss the limitation and challenges of the current methods. Lastly, we give a future perspective on the HLA-peptide binding prediction method based on network analysis.


BMC Bioinformatics | 2015

Understanding and predicting binding between human leukocyte antigens (HLAs) and peptides by network analysis

Heng Luo; Hao Ye; Hui Wen Ng; Leming Shi; Weida Tong; William Mattes; Donna L. Mendrick; Huixiao Hong

BackgroundAs the major histocompatibility complex (MHC), human leukocyte antigens (HLAs) are one of the most polymorphic genes in humans. Patients carrying certain HLA alleles may develop adverse drug reactions (ADRs) after taking specific drugs. Peptides play an important role in HLA related ADRs as they are the necessary co-binders of HLAs with drugs. Many experimental data have been generated for understanding HLA-peptide binding. However, efficiently utilizing the data for understanding and accurately predicting HLA-peptide binding is challenging. Therefore, we developed a network analysis based method to understand and predict HLA-peptide binding.MethodsQualitative Class I HLA-peptide binding data were harvested and prepared from four major databases. An HLA-peptide binding network was constructed from this dataset and modules were identified by the fast greedy modularity optimization algorithm. To examine the significance of signals in the yielded models, the modularity was compared with the modularity values generated from 1,000 random networks. The peptides and HLAs in the modules were characterized by similarity analysis. The neighbor-edges based and unbiased leverage algorithm (Nebula) was developed for predicting HLA-peptide binding. Leave-one-out (LOO) validations and two-fold cross-validations were conducted to evaluate the performance of Nebula using the constructed HLA-peptide binding network.ResultsNine modules were identified from analyzing the HLA-peptide binding network with a highest modularity compared to all the random networks. Peptide length and functional side chains of amino acids at certain positions of the peptides were different among the modules. HLA sequences were module dependent to some extent. Nebula archived an overall prediction accuracy of 0.816 in the LOO validations and average accuracy of 0.795 in the two-fold cross-validations and outperformed the method reported in the literature.ConclusionsNetwork analysis is a useful approach for analyzing large and sparse datasets such as the HLA-peptide binding dataset. The modules identified from the network analysis clustered peptides and HLAs with similar sequences and properties of amino acids. Nebula performed well in the predictions of HLA-peptide binding. We demonstrated that network analysis coupled with Nebula is an efficient approach to understand and predict HLA-peptide binding interactions and thus, could further our understanding of ADRs.


Scientific Reports | 2016

sNebula, a network-based algorithm to predict binding between human leukocyte antigens and peptides

Heng Luo; Hao Ye; Hui Wen Ng; Sugunadevi Sakkiah; Donna L. Mendrick; Huixiao Hong

Understanding the binding between human leukocyte antigens (HLAs) and peptides is important to understand the functioning of the immune system. Since it is time-consuming and costly to measure the binding between large numbers of HLAs and peptides, computational methods including machine learning models and network approaches have been developed to predict HLA-peptide binding. However, there are several limitations for the existing methods. We developed a network-based algorithm called sNebula to address these limitations. We curated qualitative Class I HLA-peptide binding data and demonstrated the prediction performance of sNebula on this dataset using leave-one-out cross-validation and five-fold cross-validations. This algorithm can predict not only peptides of different lengths and different types of HLAs, but also the peptides or HLAs that have no existing binding data. We believe sNebula is an effective method to predict HLA-peptide binding and thus improve our understanding of the immune system.


Pharmaceutics | 2015

Alignment of Short Reads: A Crucial Step for Application of Next-Generation Sequencing Data in Precision Medicine

Hao Ye; Joe Meehan; Weida Tong; Huixiao Hong

Precision medicine or personalized medicine has been proposed as a modernized and promising medical strategy. Genetic variants of patients are the key information for implementation of precision medicine. Next-generation sequencing (NGS) is an emerging technology for deciphering genetic variants. Alignment of raw reads to a reference genome is one of the key steps in NGS data analysis. Many algorithms have been developed for alignment of short read sequences since 2008. Users have to make a decision on which alignment algorithm to use in their studies. Selection of the right alignment algorithm determines not only the alignment algorithm but also the set of suitable parameters to be used by the algorithm. Understanding these algorithms helps in selecting the appropriate alignment algorithm for different applications in precision medicine. Here, we review current available algorithms and their major strategies such as seed-and-extend and q-gram filter. We also discuss the challenges in current alignment algorithms, including alignment in multiple repeated regions, long reads alignment and alignment facilitated with known genetic variants.


International Journal of Environmental Research and Public Health | 2016

Pathway Analysis Revealed Potential Diverse Health Impacts of Flavonoids that Bind Estrogen Receptors

Hao Ye; Hui Wen Ng; Sugunadevi Sakkiah; Weigong Ge; Roger Perkins; Weida Tong; Huixiao Hong

Flavonoids are frequently used as dietary supplements in the absence of research evidence regarding health benefits or toxicity. Furthermore, ingested doses could far exceed those received from diet in the course of normal living. Some flavonoids exhibit binding to estrogen receptors (ERs) with consequential vigilance by regulatory authorities at the U.S. EPA and FDA. Regulatory authorities must consider both beneficial claims and potential adverse effects, warranting the increases in research that has spanned almost two decades. Here, we report pathway enrichment of 14 targets from the Comparative Toxicogenomics Database (CTD) and the Herbal Ingredients’ Targets (HIT) database for 22 flavonoids that bind ERs. The selected flavonoids are confirmed ER binders from our earlier studies, and were here found in mainly involved in three types of biological processes, ER regulation, estrogen metabolism and synthesis, and apoptosis. Besides cancers, we conjecture that the flavonoids may affect several diseases via apoptosis pathways. Diseases such as amyotrophic lateral sclerosis, viral myocarditis and non-alcoholic fatty liver disease could be implicated. More generally, apoptosis processes may be importantly evolved biological functions of flavonoids that bind ERs and high dose ingestion of those flavonoids could adversely disrupt the cellular apoptosis process.


Environment International | 2016

Applying network analysis and Nebula (neighbor-edges based and unbiased leverage algorithm) to ToxCast data ☆

Hao Ye; Heng Luo; Hui Wen Ng; Joe Meehan; Weigong Ge; Weida Tong; Huixiao Hong

BACKGROUND ToxCast data have been used to develop models for predicting in vivo toxicity. To predict the in vivo toxicity of a new chemical using a ToxCast data based model, its ToxCast bioactivity data are needed but not normally available. The capability of predicting ToxCast bioactivity data is necessary to fully utilize ToxCast data in the risk assessment of chemicals. OBJECTIVES We aimed to understand and elucidate the relationships between the chemicals and bioactivity data of the assays in ToxCast and to develop a network analysis based method for predicting ToxCast bioactivity data. METHODS We conducted modularity analysis on a quantitative network constructed from ToxCast data to explore the relationships between the assays and chemicals. We further developed Nebula (neighbor-edges based and unbiased leverage algorithm) for predicting ToxCast bioactivity data. RESULTS Modularity analysis on the network constructed from ToxCast data yielded seven modules. Assays and chemicals in the seven modules were distinct. Leave-one-out cross-validation yielded a Q(2) of 0.5416, indicating ToxCast bioactivity data can be predicted by Nebula. Prediction domain analysis showed some types of ToxCast assay data could be more reliably predicted by Nebula than others. CONCLUSIONS Network analysis is a promising approach to understand ToxCast data. Nebula is an effective algorithm for predicting ToxCast bioactivity data, helping fully utilize ToxCast data in the risk assessment of chemicals.


Scientific Reports | 2016

DPDR-CPI, a server that predicts Drug Positioning and Drug Repositioning via Chemical-Protein Interactome

Heng Luo; Ping Zhang; Xi Hang Cao; Dizheng Du; Hao Ye; Hui Huang; Can Li; Shengying Qin; Chunling Wan; Leming Shi; Lin He; Lun Yang

The cost of developing a new drug has increased sharply over the past years. To ensure a reasonable return-on-investment, it is useful for drug discovery researchers in both industry and academia to identify all the possible indications for early pipeline molecules. For the first time, we propose the term computational “drug candidate positioning” or “drug positioning”, to describe the above process. It is distinct from drug repositioning, which identifies new uses for existing drugs and maximizes their value. Since many therapeutic effects are mediated by unexpected drug-protein interactions, it is reasonable to analyze the chemical-protein interactome (CPI) profiles to predict indications. Here we introduce the server DPDR-CPI, which can make real-time predictions based only on the structure of the small molecule. When a user submits a molecule, the server will dock it across 611 human proteins, generating a CPI profile of features that can be used for predictions. It can suggest the likelihood of relevance of the input molecule towards ~1,000 human diseases with top predictions listed. DPDR-CPI achieved an overall AUROC of 0.78 during 10-fold cross-validations and AUROC of 0.76 for the independent validation. The server is freely accessible via http://cpi.bio-x.cn/dpdr/.


Oncotarget | 2018

Competitive docking model for prediction of the human nicotinic acetylcholine receptor α7 binding of tobacco constituents

Hui Wen Ng; Carmine Leggett; Sugunadevi Sakkiah; Bohu Pan; Hao Ye; Leihong Wu; Chandrabose Selvaraj; Weida Tong; Huixiao Hong

The detrimental health effects associated with tobacco use constitute a major public health concern. The addiction associated with nicotine found in tobacco products has led to difficulty in quitting among users. Nicotinic acetylcholine receptors (nAChRs) are the targets of nicotine and are responsible for addiction to tobacco products. However, it is unknown if the other >8000 tobacco constituents are addictive. Since it is time-consuming and costly to experimentally assess addictive potential of such larger number of chemicals, computationally predicting human nAChRs binding is important for in silico evaluation of addiction potential of tobacco constituents and needs structures of human nAChRs. Therefore, we constructed three-dimensional structures of the ligand binding domain of human nAChR α7 subtype and then developed a predictive model based on the constructed structures to predict human nAChR α7 binding activity of tobacco constituents. The predictive model correctly predicted 11 out of 12 test compounds to be binders of nAChR α7. The model is a useful tool for high-throughput screening of potential addictive tobacco constituents. These results could inform regulatory science research by providing a new validated predictive tool using cutting-edge computational methodology to high-throughput screen tobacco additives and constituents for their binding interaction with the human α7 nicotinic receptor. The tool represents a prediction model capable of screening thousands of chemicals found in tobacco products for addiction potential, which improves the understanding of the potential effects of additives.

Collaboration


Dive into the Hao Ye's collaboration.

Top Co-Authors

Avatar

Huixiao Hong

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Weida Tong

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Hui Wen Ng

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Heng Luo

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Weigong Ge

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Donna L. Mendrick

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Sugunadevi Sakkiah

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Joe Meehan

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Roger Perkins

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Bohu Pan

Food and Drug Administration

View shared research outputs
Researchain Logo
Decentralizing Knowledge