Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hui Wen Ng is active.

Publication


Featured researches published by Hui Wen Ng.


Toxicological Sciences | 2015

Human Sex Hormone Binding Globulin Binding Affinities of 125 Structurally Diverse Chemicals and Comparison with Their Binding to Androgen Receptor, Estrogen Receptor and α-Fetoprotein

Huixiao Hong; William S. Branham; Hui Wen Ng; Carrie L. Moland; Stacey L. Dial; Hong Fang; Roger Perkins; Daniel M. Sheehan; Weida Tong

One endocrine disruption mechanism is through binding to nuclear receptors such as the androgen receptor (AR) and estrogen receptor (ER) in target cells. The concentration of a chemical in serum is important for its entry into the target cells to bind the receptors, which is regulated by the serum proteins. Human sex hormone-binding globulin (SHBG) is the major transport protein in serum that can bind androgens and estrogens and thus change a chemicals availability to enter the target cells. Sequestration of an androgen or estrogen in the serum can alter the chemical elicited AR- and ER-mediated responses. To better understand the chemical-induced endocrine activity, we developed a competitive binding assay using human pregnancy plasma and measured the binding to the human SHBG for 125 structurally diverse chemicals, most of which were known to bind AR and ER. Eighty seven chemicals were able to bind the human SHBG in the assay, whereas 38 chemicals were nonbinders. Binding data for human SHBG are compared with that for rat α-fetoprotein, ER and AR. Knowing the binding profiles between serum and nuclear receptors will improve assessment of a chemicals potential for endocrine disruption. The SHBG binding data reported here represent the largest data set of structurally diverse chemicals tested for human SHBG binding. Utilization of the SHBG binding data with AR and ER binding data could enable better evaluation of endocrine disrupting potential of chemicals through AR- and ER-mediated responses since sequestration in serum could be considered.


International Journal of Environmental Research and Public Health | 2014

Versatility or Promiscuity: The Estrogen Receptors, Control of Ligand Selectivity and an Update on Subtype Selective Ligands

Hui Wen Ng; Roger Perkins; Weida Tong; Huixiao Hong

The estrogen receptors (ERs) are a group of versatile receptors. They regulate an enormity of processes starting in early life and continuing through sexual reproduction, development, and end of life. This review provides a background and structural perspective for the ERs as part of the nuclear receptor superfamily and discusses the ER versatility and promiscuity. The wide repertoire of ER actions is mediated mostly through ligand-activated transcription factors and many DNA response elements in most tissues and organs. Their versatility, however, comes with the drawback of promiscuous interactions with structurally diverse exogenous chemicals with potential for a wide range of adverse health outcomes. Even when interacting with endogenous hormones, ER actions can have adverse effects in disease progression. Finally, how nature controls ER specificity and how the subtle differences in receptor subtypes are exploited in pharmaceutical design to achieve binding specificity and subtype selectivity for desired biological response are discussed. The intent of this review is to complement the large body of literature with emphasis on most recent developments in selective ER ligands.


BMC Bioinformatics | 2014

Competitive molecular docking approach for predicting estrogen receptor subtype α agonists and antagonists

Hui Wen Ng; Wenqian Zhang; Mao Shu; Heng Luo; Weigong Ge; Roger Perkins; Weida Tong; Huixiao Hong

BackgroundEndocrine disrupting chemicals (EDCs) are exogenous compounds that interfere with the endocrine system of vertebrates, often through direct or indirect interactions with nuclear receptor proteins. Estrogen receptors (ERs) are particularly important protein targets and many EDCs are ER binders, capable of altering normal homeostatic transcription and signaling pathways. An estrogenic xenobiotic can bind ER as either an agonist or antagonist to increase or inhibit transcription, respectively. The receptor conformations in the complexes of ER bound with agonists and antagonists are different and dependent on interactions with co-regulator proteins that vary across tissue type. Assessment of chemical endocrine disruption potential depends not only on binding affinity to ERs, but also on changes that may alter the receptor conformation and its ability to subsequently bind DNA response elements and initiate transcription. Using both agonist and antagonist conformations of the ERα, we developed an in silico approach that can be used to differentiate agonist versus antagonist status of potential binders.MethodsThe approach combined separate molecular docking models for ER agonist and antagonist conformations. The ability of this approach to differentiate agonists and antagonists was first evaluated using true agonists and antagonists extracted from the crystal structures available in the protein data bank (PDB), and then further validated using a larger set of ligands from the literature. The usefulness of the approach was demonstrated with enrichment analysis in data sets with a large number of decoy ligands.ResultsThe performance of individual agonist and antagonist docking models was found comparable to similar models in the literature. When combined in a competitive docking approach, they provided the ability to discriminate agonists from antagonists with good accuracy, as well as the ability to efficiently select true agonists and antagonists from decoys during enrichment analysis.ConclusionThis approach enables evaluation of potential ER biological function changes caused by chemicals bound to the receptor which, in turn, allows the assessment of a chemicals endocrine disrupting potential. The approach can be used not only by regulatory authorities to perform risk assessments on potential EDCs but also by the industry in drug discovery projects to screen for potential agonists and antagonists.


Chemical Research in Toxicology | 2015

Estrogenic Activity Data Extraction and in Silico Prediction Show the Endocrine Disruption Potential of Bisphenol A Replacement Compounds

Hui Wen Ng; Mao Shu; Heng Luo; Hao Ye; Weigong Ge; Roger Perkins; Weida Tong; Huixiao Hong

Bisphenol A (BPA) replacement compounds are released to the environment and cause widespread human exposure. However, a lack of thorough safety evaluations on the BPA replacement compounds has raised public concerns. We assessed the endocrine disruption potential of BPA replacement compounds in the market to assist their safety evaluations. A literature search was conducted to ascertain the BPA replacement compounds in use. Available experimental estrogenic activity data of these compounds were extracted from the Estrogenic Activity Database (EADB) to assess their estrogenic potential. An in silico model was developed to predict the estrogenic activity of compounds lacking experimental data. Molecular dynamics (MD) simulations were performed to understand the mechanisms by which the estrogenic compounds bind to and activate the estrogen receptor (ER). Forty-five BPA replacement compounds were identified in the literature. Seven were more estrogenic and five less estrogenic than BPA, while six were nonestrogenic in EADB. A two-tier in silico model was developed based on molecular docking to predict the estrogenic activity of the 27 compounds lacking data. Eleven were predicted as ER binders and 16 as nonbinders. MD simulations revealed hydrophobic contacts and hydrogen bonds as the main interactions between ER and the estrogenic compounds.


BMC Bioinformatics | 2014

Whole genome sequencing of 35 individuals provides insights into the genetic architecture of Korean population

Wenqian Zhang; Joe Meehan; Zhenqiang Su; Hui Wen Ng; Mao Shu; Heng Luo; Weigong Ge; Roger Perkins; Weida Tong; Huixiao Hong

BackgroundDue to a significant decline in the costs associated with next-generation sequencing, it has become possible to decipher the genetic architecture of a population by sequencing a large number of individuals to a deep coverage. The Korean Personal Genomes Project (KPGP) recently sequenced 35 Korean genomes at high coverage using the Illumina Hiseq platform and made the deep sequencing data publicly available, providing the scientific community opportunities to decipher the genetic architecture of the Korean population.MethodsIn this study, we used two single nucleotide variant (SNV) calling pipelines: mapping the raw reads obtained from whole genome sequencing of 35 Korean individuals in KPGP using BWA and SOAP2 followed by SNV calling using SAMtools and SOAPsnp, respectively. The consensus SNVs obtained from the two SNV pipelines were used to represent the SNVs of the Korean population. We compared these SNVs to those from 17 other populations provided by the HapMap consortium and the 1000 Genomes Project (1KGP) and identified SNVs that were only present in the Korean population. We studied the mutation spectrum and analyzed the genes of non-synonymous SNVs only detected in the Korean population.ResultsWe detected a total of 8,555,726 SNVs in the 35 Korean individuals and identified 1,213,613 SNVs detected in at least one Korean individual (SNV-1) and 12,640 in all of 35 Korean individuals (SNV-35) but not in 17 other populations. In contrast with the SNVs common to other populations in HapMap and 1KGP, the Korean only SNVs had high percentages of non-silent variants, emphasizing the unique roles of these Korean only SNVs in the Korean population. Specifically, we identified 8,361 non-synonymous Korean only SNVs, of which 58 SNVs existed in all 35 Korean individuals. The 5,754 genes of non-synonymous Korean only SNVs were highly enriched in some metabolic pathways. We found adhesion is the top disease term associated with SNV-1 and Nelson syndrome is the only disease term associated with SNV-35. We found that a significant number of Korean only SNVs are in genes that are associated with the drug term of adenosine.ConclusionWe identified the SNVs that were found in the Korean population but not seen in other populations, and explored the corresponding genes and pathways as well as the associated disease terms and drug terms. The results expand our knowledge of the genetic architecture of the Korean population, which will benefit the implementation of personalized medicine for the Korean population.


Bioinformatics and Biology Insights | 2015

Machine Learning Methods for Predicting HLA–Peptide Binding Activity

Heng Luo; Hao Ye; Hui Wen Ng; Lemming Shi; Weida Tong; Donna L. Mendrick; Huixiao Hong

As major histocompatibility complexes in humans, the human leukocyte antigens (HLAs) have important functions to present antigen peptides onto T-cell receptors for immunological recognition and responses. Interpreting and predicting HLA-peptide binding are important to study T-cell epitopes, immune reactions, and the mechanisms of adverse drug reactions. We review different types of machine learning methods and tools that have been used for HLA-peptide binding prediction. We also summarize the descriptors based on which the HLA-peptide binding prediction models have been constructed and discuss the limitation and challenges of the current methods. Lastly, we give a future perspective on the HLA-peptide binding prediction method based on network analysis.


International Journal of Environmental Research and Public Health | 2016

Experimental Data Extraction and in Silico Prediction of the Estrogenic Activity of Renewable Replacements for Bisphenol A.

Huixiao Hong; Benjamin G. Harvey; Giuseppe R. Palmese; Joseph F. Stanzione; Hui Wen Ng; Sugunadevi Sakkiah; Weida Tong; Joshua M. Sadler

Bisphenol A (BPA) is a ubiquitous compound used in polymer manufacturing for a wide array of applications; however, increasing evidence has shown that BPA causes significant endocrine disruption and this has raised public concerns over safety and exposure limits. The use of renewable materials as polymer feedstocks provides an opportunity to develop replacement compounds for BPA that are sustainable and exhibit unique properties due to their diverse structures. As new bio-based materials are developed and tested, it is important to consider the impacts of both monomers and polymers on human health. Molecular docking simulations using the Estrogenic Activity Database in conjunction with the decision forest were performed as part of a two-tier in silico model to predict the activity of 29 bio-based platform chemicals in the estrogen receptor-α (ERα). Fifteen of the candidates were predicted as ER binders and fifteen as non-binders. Gaining insight into the estrogenic activity of the bio-based BPA replacements aids in the sustainable development of new polymeric materials.


BMC Bioinformatics | 2015

Understanding and predicting binding between human leukocyte antigens (HLAs) and peptides by network analysis

Heng Luo; Hao Ye; Hui Wen Ng; Leming Shi; Weida Tong; William Mattes; Donna L. Mendrick; Huixiao Hong

BackgroundAs the major histocompatibility complex (MHC), human leukocyte antigens (HLAs) are one of the most polymorphic genes in humans. Patients carrying certain HLA alleles may develop adverse drug reactions (ADRs) after taking specific drugs. Peptides play an important role in HLA related ADRs as they are the necessary co-binders of HLAs with drugs. Many experimental data have been generated for understanding HLA-peptide binding. However, efficiently utilizing the data for understanding and accurately predicting HLA-peptide binding is challenging. Therefore, we developed a network analysis based method to understand and predict HLA-peptide binding.MethodsQualitative Class I HLA-peptide binding data were harvested and prepared from four major databases. An HLA-peptide binding network was constructed from this dataset and modules were identified by the fast greedy modularity optimization algorithm. To examine the significance of signals in the yielded models, the modularity was compared with the modularity values generated from 1,000 random networks. The peptides and HLAs in the modules were characterized by similarity analysis. The neighbor-edges based and unbiased leverage algorithm (Nebula) was developed for predicting HLA-peptide binding. Leave-one-out (LOO) validations and two-fold cross-validations were conducted to evaluate the performance of Nebula using the constructed HLA-peptide binding network.ResultsNine modules were identified from analyzing the HLA-peptide binding network with a highest modularity compared to all the random networks. Peptide length and functional side chains of amino acids at certain positions of the peptides were different among the modules. HLA sequences were module dependent to some extent. Nebula archived an overall prediction accuracy of 0.816 in the LOO validations and average accuracy of 0.795 in the two-fold cross-validations and outperformed the method reported in the literature.ConclusionsNetwork analysis is a useful approach for analyzing large and sparse datasets such as the HLA-peptide binding dataset. The modules identified from the network analysis clustered peptides and HLAs with similar sequences and properties of amino acids. Nebula performed well in the predictions of HLA-peptide binding. We demonstrated that network analysis coupled with Nebula is an efficient approach to understand and predict HLA-peptide binding interactions and thus, could further our understanding of ADRs.


Expert Opinion on Therapeutic Targets | 2016

Structures of androgen receptor bound with ligands: advancing understanding of biological functions and drug discovery

Sugunadevi Sakkiah; Hui Wen Ng; Weida Tong; Huixiao Hong

ABSTRACT Introduction: Androgen receptor (AR) is a ligand-dependent transcription factor and a member of the nuclear receptor superfamily. It plays a vital role in male sexual development and regulates gene expression in various tissues, including prostate. Androgens are compounds that exert their biological effects via interaction with AR. Binding of androgens to AR initiates conformational changes in AR that affect binding of co-regulator proteins and DNA. AR agonists and antagonists are widely used in a variety of clinical applications (i.e. hypogonadism and prostate cancer therapy). Areas covered: This review provides a close look at structures of AR-ligand complexes and mutations in the receptor that have been revealed, discusses current challenges in the field, and sheds light on future directions. Expert opinion: AR is one of the primary targets for the treatment of prostate cancer, as AR antagonists inhibit prostate cancer growth. However, these drugs are not effective for long-term treatment and lead to castration-resistant prostate cancer. The structures of AR-ligand complexes are an invaluable scientific asset that enhances our understanding of biological functions and mechanisms of androgenic and anti-androgenic chemicals as well as promotes the discovery of superior drug candidates.


Journal of Genetics | 2015

Comparing genetic variants detected in the 1000 genomes project with SNPs determined by the International HapMap Consortium

Wenqian Zhang; Hui Wen Ng; Mao Shu; Heng Luo; Zhenqiang Su; Weigong Ge; Roger Perkins; Weida Tong; Huixiao Hong

Single-nucleotide polymorphisms (SNPs) determined based on SNP arrays from the international HapMap consortium (HapMap) and the genetic variants detected in the 1000 genomes project (1KGP) can serve as two references for genomewide association studies (GWAS). We conducted comparative analyses to provide a means for assessing concerns regarding SNP array-based GWAS findings as well as for realistically bounding expectations for next generation sequencing (NGS)-based GWAS. We calculated and compared base composition, transitions to transversions ratio, minor allele frequency and heterozygous rate for SNPs from HapMap and 1KGP for the 622 common individuals. We analysed the genotype discordance between HapMap and 1KGP to assess consistency in the SNPs from the two references. In 1KGP, 90.58% of 36,817,799 SNPs detected were not measured in HapMap. More SNPs with minor allele frequencies less than 0.01 were found in 1KGP than HapMap. The two references have low discordance (generally smaller than 0.02) in genotypes of common SNPs, with most discordance from heterozygous SNPs. Our study demonstrated that SNP array-based GWAS findings were reliable and useful, although only a small portion of genetic variances were explained. NGS can detect not only common but also rare variants, supporting the expectation that NGS-based GWAS will be able to incorporate a much larger portion of genetic variance than SNP arrays-based GWAS.

Collaboration


Dive into the Hui Wen Ng's collaboration.

Top Co-Authors

Avatar

Huixiao Hong

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Weida Tong

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Heng Luo

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Hao Ye

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Roger Perkins

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Weigong Ge

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Sugunadevi Sakkiah

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Mao Shu

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Donna L. Mendrick

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Wenqian Zhang

Food and Drug Administration

View shared research outputs
Researchain Logo
Decentralizing Knowledge