Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hilda Solanoy is active.

Publication


Featured researches published by Hilda Solanoy.


Science Translational Medicine | 2012

Ser1292 Autophosphorylation Is an Indicator of LRRK2 Kinase Activity and Contributes to the Cellular Effects of PD Mutations

Zejuan Sheng; Shuo Zhang; Daisy Bustos; Tracy Kleinheinz; Claire E. Le Pichon; Sara L. Dominguez; Hilda Solanoy; Jason Drummond; Xiaolin Zhang; Xiao Ding; Fang Cai; Qinghua Song; Xianting Li; Zhenyu Yue; Marcel van der Brug; Daniel J. Burdick; Janet Gunzner-Toste; Huifen Chen; Xingrong Liu; Anthony A. Estrada; Zachary Kevin Sweeney; Kimberly Scearce-Levie; John Moffat; Donald S. Kirkpatrick; Haitao Zhu

LRRK2 autophosphorylation on Ser1292 may be a useful indicator of kinase activity, providing a readout for screening candidate LRRK2 inhibitors. LRRK2 Inhibitor Heralds a Happier Song Genetic polymorphisms in the leucine-rich repeat kinase 2 (LRRK2) are the most common causes of familial Parkinson’s disease (PD) and are also linked to idiopathic PD. The most prevalent LRRK2 PD mutation G2019S imbues the kinase with a gain of function, suggesting that blocking LRRK2 activity may be a therapeutic strategy for reversing the pathogenic effects of LRRK2 mutations in PD. However, the mechanistic link between LRRK2 kinase activity and the cellular effects of PD mutations remains elusive, and there has been no reliable way to monitor LRRK2 kinase activity in vivo. Using quantitative mass spectrometry and subsequent phospho-specific antibody approaches, Sheng et al. now report that LRRK2 phosphorylates itself on Ser1292 in vitro and in vivo (Ser1292 autophosphorylation). Five of the six confirmed familial LRRK2 PD mutations increased Ser1292 autophosphorylation when transiently expressed in heterologous cells, suggesting increased Ser1292 autophosphorylation as a common feature of LRRK2 PD mutations. Elimination of the Ser1292 autophosphorylation site abrogated the defects on neurite outgrowth caused by LRRK2 PD mutations in cultured rat embryonic neurons. Using Ser1292 autophosphorylation as the readout of kinase activity, Sheng et al. developed assays to monitor LRRK2 kinase activity in cultured cells and rodents. These assays were used to profile the potencies of hundreds of LRRK2 kinase inhibitors derived from high-throughput compound screening. A potent and selective compound that effectively inhibited LRRK2 kinase activity in mouse brains and reversed cellular effects of LRRK2 PD mutations in cultured primary neurons was identified. Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common cause of familial Parkinson’s disease (PD). Although biochemical studies have shown that certain PD mutations confer elevated kinase activity in vitro on LRRK2, there are no methods available to directly monitor LRRK2 kinase activity in vivo. We demonstrate that LRRK2 autophosphorylation on Ser1292 occurs in vivo and is enhanced by several familial PD mutations including N1437H, R1441G/C, G2019S, and I2020T. Combining two PD mutations together further increases Ser1292 autophosphorylation. Mutation of Ser1292 to alanine (S1292A) ameliorates the effects of LRRK2 PD mutations on neurite outgrowth in cultured rat embryonic primary neurons. Using cell-based and pharmacodynamic assays with phosphorylated Ser1292 as the readout, we developed a brain-penetrating LRRK2 kinase inhibitor that blocks Ser1292 autophosphorylation in vivo and attenuates the cellular consequences of LRRK2 PD mutations in vitro. These data suggest that Ser1292 autophosphorylation may be a useful indicator of LRRK2 kinase activity in vivo and may contribute to the cellular effects of certain PD mutations.


Science Translational Medicine | 2013

Addressing safety liabilities of TfR bispecific antibodies that cross the blood-brain barrier.

Jessica Couch; Y. Joy Yu; Yin Zhang; Jacqueline M. Tarrant; Reina N. Fuji; William J. Meilandt; Hilda Solanoy; Raymond K. Tong; Kwame Hoyte; Wilman Luk; Yanmei Lu; Kapil Gadkar; Saileta Prabhu; Benjamin A. Ordonia; Quyen Nguyen; Yuwen Lin; Zhonghua Lin; Mercedesz Balazs; Kimberly Scearce-Levie; James A. Ernst; Mark S. Dennis; Ryan J. Watts

The safety of therapeutic bispecific antibodies that use TfR for delivery to the brain can be improved by reducing affinity for TfR and eliminating antibody effector function. Averting Roadblocks En Route to the Brain The blood-brain barrier represents a formidable blockade preventing therapeutic antibody delivery into the brain. Bispecific antibodies using the transferrin receptor (TfR) have shown promise for boosting therapeutic antibody uptake into the brain. Although TfR can act as a molecular lift to promote brain uptake, little is known about the safety ramifications of this approach. Building on a pair of studies published in Science Translational Medicine, Couch and colleagues now report that when mice were dosed with therapeutic TfR antibodies, the animals showed acute clinical reactions and a reduction in immature red blood cells, known as reticulocytes. TfR bispecific antibodies engineered to lack Fc interactions with immune cells eliminated adverse acute clinical reactions and reduced reticulocyte loss; the extent of reticulocyte loss was also influenced by binding to TfR and interaction with the complement cascade. Because reticulocytes express high levels of TfR, other cell types that express high levels of TfR were also investigated. The authors observed, for example, that the blood-brain barrier remained completely intact after TfR antibodies were administered to mice, despite the high expression of TfR in brain endothelial cells. Finally, multiple doses of TfR/BACE1 bispecific antibodies reduced amyloid-β, a toxic protein implicated in Alzheimer’s disease, with minimal sustained toxicity. Investigation of monkey and human TfR levels in circulating reticulocytes suggested that loss of these cells may be less likely to occur in primates than in mice. The translational implications of these discoveries suggest that the blood-brain barrier is not the only obstacle to surmount on the way to the brain, at least when using TfR as a molecular lift. Bispecific antibodies using the transferrin receptor (TfR) have shown promise for boosting antibody uptake in brain. Nevertheless, there are limited data on the therapeutic properties including safety liabilities that will enable successful development of TfR-based therapeutics. We evaluate TfR/BACE1 bispecific antibody variants in mouse and show that reducing TfR binding affinity improves not only brain uptake but also peripheral exposure and the safety profile of these antibodies. We identify and seek to address liabilities of targeting TfR with antibodies, namely, acute clinical signs and decreased circulating reticulocytes observed after dosing. By eliminating Fc effector function, we ameliorated the acute clinical signs and partially rescued a reduction in reticulocytes. Furthermore, we show that complement mediates a residual decrease in reticulocytes observed after Fc effector function is eliminated. These data raise important safety concerns and potential mitigation strategies for the development of TfR-based therapies that are designed to cross the blood-brain barrier.


Journal of Experimental Medicine | 2013

Dual leucine zipper kinase is required for excitotoxicity-induced neuronal degeneration

Christine D. Pozniak; Arundhati Sengupta Ghosh; Alvin Gogineni; Jesse E. Hanson; Seung-Hye Lee; Jessica L. Larson; Hilda Solanoy; Daisy Bustos; Hong Li; Hai Ngu; Adrian M. Jubb; Gai Ayalon; Jiansheng Wu; Kimberly Scearce-Levie; Qiang Zhou; Robby M. Weimer; Donald S. Kirkpatrick; Joseph W. Lewcock

Loss of dual leucine zipper kinase results in attenuated JNK/c-Jun stress response pathway activation and reduced neuronal degeneration after kainic acid–induced excitotoxic seizures.


Journal of Medicinal Chemistry | 2015

Discovery of Dual Leucine Zipper Kinase (DLK, MAP3K12) Inhibitors with Activity in Neurodegeneration Models

Snahel Patel; Fred E. Cohen; Brian Dean; Kelly De La Torre; Gauri Deshmukh; Anthony A. Estrada; Arundhati Sengupta Ghosh; Paul Gibbons; Amy Gustafson; Malcolm P. Huestis; Claire E. Le Pichon; Han Lin; Wendy Liu; Xingrong Liu; Yichin Liu; Cuong Ly; Joseph P. Lyssikatos; Changyou Ma; Kimberly Scearce-Levie; Young G. Shin; Hilda Solanoy; Kimberly L. Stark; Jian Wang; Bei Wang; Xianrui Zhao; Joseph W. Lewcock; Michael Siu

Dual leucine zipper kinase (DLK, MAP3K12) was recently identified as an essential regulator of neuronal degeneration in multiple contexts. Here we describe the generation of potent and selective DLK inhibitors starting from a high-throughput screening hit. Using proposed hinge-binding interactions to infer a binding mode and specific design parameters to optimize for CNS druglike molecules, we came to focus on the di(pyridin-2-yl)amines because of their combination of desirable potency and good brain penetration following oral dosing. Our lead inhibitor GNE-3511 (26) displayed concentration-dependent protection of neurons from degeneration in vitro and demonstrated dose-dependent activity in two different animal models of disease. These results suggest that specific pharmacological inhibition of DLK may have therapeutic potential in multiple indications.


Science Translational Medicine | 2017

Loss of dual leucine zipper kinase signaling is protective in animal models of neurodegenerative disease

Claire E. Le Pichon; William J. Meilandt; Sara L. Dominguez; Hilda Solanoy; Han Lin; Hai Ngu; Alvin Gogineni; Arundhati Sengupta Ghosh; Zhiyu Jiang; Seung-Hye Lee; Janice Maloney; Vineela D. Gandham; Christine D. Pozniak; Bei Wang; Sebum Lee; Michael Siu; Snahel Patel; Zora Modrusan; Xingrong Liu; York Rudhard; Miriam Baca; Amy Gustafson; Josh Kaminker; Richard A. D. Carano; Eric J. Huang; Oded Foreman; Robby M. Weimer; Kimberly Scearce-Levie; Joseph W. Lewcock

Blocking dual leucine zipper kinase slows disease progression in animal models of ALS and Alzheimer’s disease. A new therapeutic target zips into view The genetics, pathology, and clinical manifestations of chronic neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), are heterogeneous, which has made the development and testing of candidate therapeutics difficult. Here, Le Pichon et al. identify dual leucine zipper kinase (DLK) as a common regulator of neuronal degeneration in mouse models of ALS and Alzheimer’s disease and in human patient postmortem brain tissue. Deletion of DLK or treatment with a DLK inhibitor resulted in neuronal protection and slowing of disease progression after diverse insults in several mouse models of neurodegenerative disease. This suggests that DLK may have broad applicability as a therapeutic target for the treatment of a number of neurodegenerative diseases. Hallmarks of chronic neurodegenerative disease include progressive synaptic loss and neuronal cell death, yet the cellular pathways that underlie these processes remain largely undefined. We provide evidence that dual leucine zipper kinase (DLK) is an essential regulator of the progressive neurodegeneration that occurs in amyotrophic lateral sclerosis and Alzheimer’s disease. We demonstrate that DLK/c-Jun N-terminal kinase signaling was increased in mouse models and human patients with these disorders and that genetic deletion of DLK protected against axon degeneration, neuronal loss, and functional decline in vivo. Furthermore, pharmacological inhibition of DLK activity was sufficient to attenuate the neuronal stress response and to provide functional benefit even in the presence of ongoing disease. These findings demonstrate that pathological activation of DLK is a conserved mechanism that regulates neurodegeneration and suggest that DLK inhibition may be a potential approach to treat multiple neurodegenerative diseases.


PLOS ONE | 2013

EGFR Inhibitor Erlotinib Delays Disease Progression but Does Not Extend Survival in the SOD1 Mouse Model of ALS

Claire E. Le Pichon; Sara L. Dominguez; Hilda Solanoy; Hai Ngu; Nicholas Lewin-Koh; Mark J. Chen; Jeffrey Eastham-Anderson; Ryan J. Watts; Kimberly Scearce-Levie

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that causes progressive paralysis due to motor neuron death. Several lines of published evidence suggested that inhibition of epidermal growth factor receptor (EGFR) signaling might protect neurons from degeneration. To test this hypothesis in vivo, we treated the SOD1 transgenic mouse model of ALS with erlotinib, an EGFR inhibitor clinically approved for oncology indications. Although erlotinib failed to extend ALS mouse survival it did provide a modest but significant delay in the onset of multiple behavioral measures of disease progression. However, given the lack of protection of motor neuron synapses and the lack of survival extension, the small benefits observed after erlotinib treatment appear purely symptomatic, with no modification of disease course.


eNeuro | 2015

Cognitive Deficits, Changes in Synaptic Function, and Brain Pathology in a Mouse Model of Normal Aging(1,2,3).

Martin Weber; Tiffany Wu; Jesse E. Hanson; Nazia M. Alam; Hilda Solanoy; Hai Ngu; Benjamin E. Lauffer; Han H. Lin; Sara L. Dominguez; Jens Reeder; Jennifer Tom; Pascal Steiner; Oded Foreman; Glen T. Prusky; Kimberly Scearce-Levie

Abstract Age is the main risk factor for sporadic Alzheimer’s disease. Yet, cognitive decline in aged rodents has been less well studied, possibly due to concomitant changes in sensory or locomotor function that can complicate cognitive tests. We tested mice that were 3, 11, and 23 months old in cognitive, sensory, and motor measures, and postmortem measures of gliosis and neural activity (c-Fos). Hippocampal synaptic function was also examined. While age-related impairments were detectable in tests of spatial memory, greater age-dependent effects were observed in tests of associative learning [active avoidance (AA)]. Gross visual function was largely normal, but startle responses to acoustic stimuli decreased with increased age, possibly due to hearing impairments. Therefore, a novel AA variant in which light alone served as the conditioning stimuli was used. Age-related deficits were again observed. Mild changes in vision, as measured by optokinetic responses, were detected in 19- versus 4-month-old mice, but these were not correlated to AA performance. Thus, deficits in hearing or vision are unlikely to account for the observed deficits in cognitive measures. Increased gliosis was observed in the hippocampal formation at older ages. Age-related changes in neural function and plasticity were observed with decreased c-Fos in the dentate gyrus, and decreased synaptic strength and paired-pulse facilitation in CA1 slices. This work, which carefully outlines age-dependent impairments in cognitive and synaptic function, c-Fos activity, and gliosis during normal aging in the mouse, suggests robust translational measures that will facilitate further study of the biology of aging.


Journal of Medicinal Chemistry | 2015

Scaffold-Hopping and Structure-Based Discovery of Potent, Selective, And Brain Penetrant N-(1H-Pyrazol-3-yl)pyridin-2-amine Inhibitors of Dual Leucine Zipper Kinase (DLK, MAP3K12).

Snahel Patel; Seth F. Harris; Paul Gibbons; Gauri Deshmukh; Amy Gustafson; T Kellar; Han Lin; Xingrong Liu; Yichin Liu; Changyou Ma; Kimberly Scearce-Levie; Arundhati Sengupta Ghosh; Young G. Shin; Hilda Solanoy; J Wang; Bei Wang; JianPing Yin; Michael Siu; Joseph W. Lewcock

Recent data suggest that inhibition of dual leucine zipper kinase (DLK, MAP3K12) has therapeutic potential for treatment of a number of indications ranging from acute neuronal injury to chronic neurodegenerative disease. Thus, high demand exists for selective small molecule DLK inhibitors with favorable drug-like properties and good CNS penetration. Herein we describe a shape-based scaffold hopping approach to convert pyrimidine 1 to a pyrazole core with improved physicochemical properties. We also present the first crystal structures of DLK. By utilizing a combination of property and structure-based design, we identified inhibitor 11, a potent, selective, and brain-penetrant inhibitor of DLK with activity in an in vivo nerve injury model.


eLife | 2017

Dual leucine zipper kinase-dependent PERK activation contributes to neuronal degeneration following insult

Martin Larhammar; Sarah Huntwork-Rodriguez; Zhiyu Jiang; Hilda Solanoy; Arundhati Sengupta Ghosh; Bei Wang; Joshua S. Kaminker; Kevin Huang; Jeffrey Eastham-Anderson; Michael Siu; Zora Modrusan; Madeline M. Farley; Marc Tessier-Lavigne; Joseph W. Lewcock; Trent Watkins

The PKR-like endoplasmic reticulum kinase (PERK) arm of the Integrated Stress Response (ISR) is implicated in neurodegenerative disease, although the regulators and consequences of PERK activation following neuronal injury are poorly understood. Here we show that PERK signaling is a component of the mouse MAP kinase neuronal stress response controlled by the Dual Leucine Zipper Kinase (DLK) and contributes to DLK-mediated neurodegeneration. We find that DLK-activating insults ranging from nerve injury to neurotrophin deprivation result in both c-Jun N-terminal Kinase (JNK) signaling and the PERK- and ISR-dependent upregulation of the Activating Transcription Factor 4 (ATF4). Disruption of PERK signaling delays neurodegeneration without reducing JNK signaling. Furthermore, DLK is both sufficient for PERK activation and necessary for engaging the ISR subsequent to JNK-mediated retrograde injury signaling. These findings identify DLK as a central regulator of not only JNK but also PERK stress signaling in neurons, with both pathways contributing to neurodegeneration. DOI: http://dx.doi.org/10.7554/eLife.20725.001


Scientific Reports | 2017

BACE1 across species: a comparison of the in vivo consequences of BACE1 deletion in mice and rats

Martin Weber; Tiffany Wu; William J. Meilandt; Sara L. Dominguez; Hilda Solanoy; Janice Maloney; Hai Ngu; Miriam Baca; Chung Kung; Lisa Lima; Timothy K. Earr; Daniel Fleck; Shannon D. Shields; William F. Forrest; Oded Foreman; Søren Warming; Ryan J. Watts; Kimberly Scearce-Levie

Assessing BACE1 (β-site APP cleaving enzyme 1) knockout mice for general health and neurological function may be useful in predicting risks associated with prolonged pharmacological BACE1 inhibition, a treatment approach currently being developed for Alzheimer’s disease. To determine whether BACE1 deletion-associated effects in mice generalize to another species, we developed a novel Bace1−/− rat line using zinc-finger nuclease technology and compared Bace1−/− mice and rats with their Bace1+/+ counterparts. Lack of BACE1 was confirmed in Bace1−/− animals from both species. Removal of BACE1 affected startle magnitude, balance beam performance, pain response, and nerve myelination in both species. While both mice and rats lacking BACE1 have shown increased mortality, the increase was smaller and restricted to early developmental stages for rats. Bace1−/− mice and rats further differed in body weight, spontaneous locomotor activity, and prepulse inhibition of startle. While the effects of species and genetic background on these phenotypes remain difficult to distinguish, our findings suggest that BACE1’s role in myelination and some sensorimotor functions is consistent between mice and rats and may be conserved in other species. Other phenotypes differ between these models, suggesting that some effects of BACE1 inhibition vary with the biological context (e.g. species or background strain).

Collaboration


Dive into the Hilda Solanoy's collaboration.

Researchain Logo
Decentralizing Knowledge