Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hosein Foroutan is active.

Publication


Featured researches published by Hosein Foroutan.


Geoscientific Model Development | 2017

Description and evaluation of the Community Multiscale Air Quality (CMAQ) modeling system version 5.1

K. Wyat Appel; Sergey L. Napelenok; Kristen M. Foley; Havala O. T. Pye; Christian Hogrefe; Deborah Luecken; Jesse O. Bash; Shawn J. Roselle; Jonathan E. Pleim; Hosein Foroutan; William T. Hutzell; George Pouliot; Golam Sarwar; Kathleen M. Fahey; Brett Gantt; Robert C. Gilliam; Nicholas Heath; Daiwen Kang; Rohit Mathur; Donna B. Schwede; Tanya L. Spero; David C. Wong; Jeffrey Young

The Community Multiscale Air Quality (CMAQ) model is a comprehensive multipollutant air quality modeling system developed and maintained by the US Environmental Protection Agency’s (EPA) Office of Research and Development (ORD). Recently, version 5.1 of the CMAQ model (v5.1) was released to the public, incorporating a large number of science updates and extended capabilities over the previous release version of the model (v5.0.2). These updates include the following: improvements in the meteorological calculations in both CMAQ and the Weather Research and Forecast (WRF) model used to provide meteorological fields to CMAQ, updates to the gas and aerosol chemistry, revisions to the calculations of clouds and photolysis, and improvements to the dry and wet deposition in the model. Sensitivity simulations isolating several of the major updates to the modeling system show that changes to the meteorological calculations result in enhanced afternoon and early evening mixing in the model, periods when the model historically underestimates mixing. This enhanced mixing results in higher ozone (O3) mixing ratios on average due to reduced NO titration, and lower fine particulate matter (PM2.5) concentrations due to greater dilution of primary pollutants (e.g., elemental and organic carbon). Updates to the clouds and photolysis calculations greatly improve consistency between the WRF and CMAQ models and result in generally higher O3 mixing ratios, primarily due to reduced cloudiness and attenuation of photolysis in the model. Updates to the aerosol chemistry result in higher secondary organic aerosol (SOA) concentrations in the summer, thereby reducing summertime PM2.5 bias (PM2.5 is typically underestimated by CMAQ in the summer), while updates to the gas chemistry result in slightly higher O3 and PM2.5 on average in January and July. Overall, the seasonal variation in simulated PM2.5 generally improves in CMAQv5.1 (when considering all model updates), as simulated PM2.5 concentrations decrease in the winter (when PM2.5 is generally overestimated by CMAQ) and increase in the summer (when PM2.5 is generally underestimated by CMAQ). Ozone mixing ratios are higher on average with v5.1 vs. v5.0.2, resulting in higher O3 mean bias, as O3 tends to be overestimated by CMAQ throughout most of the year (especially at locations where the observed O3 is low); however, O3 correlation is largely improved with v5.1. Sensitivity simulations for several hypothetical emission reduction scenarios show that v5.1 tends to be slightly more responsive to reductions in NOx (NO + NO2), VOC and SOx (SO2 + SO4) emissions than v5.0.2, representing an improvement as previous studies have shown CMAQ to underestimate the observed reduction in O3 due to large, widespread reductions in observed emissions.


Journal of Applied Mechanics | 2014

Flow in the Simplified Draft Tube of a Francis Turbine Operating at Partial Load—Part I: Simulation of the Vortex Rope

Hosein Foroutan; Savas Yavuzkurt

Numerical simulations and analysis of the vortex rope formation in a simplified draft tube of a model Francis turbine are carried out in this paper, which is the first part of a two-paper series. The emphasis of this part is on the simulation and investigation of flow using different turbulence closure models. Two part-load operating conditions with same head and different flow rates (91% and 70% of the best efficiency point (BEP) flow rate) are considered. Steady and unsteady simulations are carried out for axisymmetric and three-dimensional grid in a simplified axisymmetric geometry, and results are compared with experimental data. It is seen that steady simulations with Reynolds-averaged Navier–Stokes (RANS) models cannot resolve the vortex rope and give identical symmetric results for both the axisymmetric and three-dimensional flow geometries. These RANS simulations underpredict the axial velocity (by at least 14%) and turbulent kinetic energy (by at least 40%) near the center of the draft tube, even quite close to the design condition. Moving farther from the design point, models fail in predicting the correct levels of the axial velocity in the draft tube. Unsteady simulations are performed using unsteady RANS (URANS) and detached eddy simulation (DES) turbulence closure approaches. URANS models cannot capture the self-induced unsteadiness of the vortex rope and give steady solutions while DES model gives sufficient unsteady results. Using the proper unsteady model, i.e., DES, the overall shape of the vortex rope is correctly predicted and the calculated vortex rope frequency differs only 6% from experimental data. It is confirmed that the vortex rope is formed due to the roll-up of the shear layer at the interface between the low-velocity inner region created by the wake of the crown cone and highly swirling outer flow.


Journal of Advances in Modeling Earth Systems | 2017

Development and evaluation of a physics‐based windblown dust emission scheme implemented in the CMAQ modeling system

Hosein Foroutan; Jeffrey Young; Sergey L. Napelenok; L. Ran; K. W. Appel; Robert C. Gilliam; Jonathan E. Pleim

A new windblown dust emission treatment was incorporated in the Community Multiscale Air Quality (CMAQ) modeling system. This new model treatment has been built upon previously developed physics-based parameterization schemes from the literature. A distinct and novel feature of this scheme, however, is the incorporation of a newly developed dynamic relation for the surface roughness length relevant to small-scale dust generation processes. Through this implementation, the effect of nonerodible elements on the local flow acceleration, drag partitioning, and surface coverage protection is modeled in a physically based and consistent manner. Careful attention is paid in integrating the new windblown dust treatment in the CMAQ model to ensure that the required input parameters are correctly configured. To test the performance of the new dust module in CMAQ, the entire year 2011 is simulated for the continental United States, with particular emphasis on the southwestern United States (SWUS) where windblown dust concentrations are relatively large. Overall, the model shows good performance with the daily mean bias of soil concentrations fluctuating in the range of ±1 μg m−3 for the entire year. Springtime soil concentrations are in quite good agreement (normalized mean bias of 8.3%) with observations, while moderate to high underestimation of soil concentration is seen in the summertime. The latter is attributed to the issue of representing the convective dust storms in summertime. Evaluations against observations for seven elevated dust events in the SWUS indicate that the new windblown dust treatment is capable of capturing spatial and temporal characteristics of dust outbreaks.


Atmospheric Chemistry and Physics | 2017

Coupling of organic and inorganic aerosol systems and the effect on gas–particle partitioning in the southeastern US

Havala O. T. Pye; Andreas Zuend; Juliane L. Fry; Gabriel Isaacman-VanWertz; Shannon L. Capps; K. Wyat Appel; Hosein Foroutan; Lu Xu; Nga L. Ng; Allen H. Goldstein

Several models were used to describe the partitioning of ammonia, water, and organic compounds between the gas and particle phases for conditions in the southeastern US during summer 2013. Existing equilibrium models and frameworks were found to be sufficient, although additional improvements in terms of estimating pure-species vapor pressures are needed. Thermodynamic model predictions were consistent, to first order, with a molar ratio of ammonium to sulfate of approximately 1.6 to 1.8 (ratio of ammonium to 2× sulfate, RN/2S ≈ 0.8 to 0.9) with approximately 70% of total ammonia and ammonium (NHx) in the particle. Southeastern Aerosol Research and Characterization Network (SEARCH) gas and aerosol and Southern Oxidant and Aerosol Study (SOAS) Monitor for AeRosols and Gases in Ambient air (MARGA) aerosol measurements were consistent with these conditions. CMAQv5.2 regional chemical transport model predictions did not reflect these conditions due to a factor of 3 overestimate of the nonvolatile cations. In addition, gas-phase ammonia was overestimated in the CMAQ model leading to an even lower fraction of total ammonia in the particle. Chemical Speciation Network (CSN) and aerosol mass spectrometer (AMS) measurements indicated less ammonium per sulfate than SEARCH and MARGA measurements and were inconsistent with thermodynamic model predictions. Organic compounds were predicted to be present to some extent in the same phase as inorganic constituents, modifying their activity and resulting in a decrease in [H+]air (H+ in μgm−3 air), increase in ammonia partitioning to the gas phase, and increase in pH compared to complete organic vs. inorganic liquid–liquid phase separation. In addition, accounting for nonideal mixing modified the pH such that a fully interactive inorganic–organic system had a pH roughly 0.7 units higher than predicted using traditional methods (pH = 1.5 vs. 0.7). Particle-phase interactions of organic and inorganic compounds were found to increase partitioning towards the particle phase (vs. gas phase) for highly oxygenated (O : C≥0.6) compounds including several isoprene-derived tracers as well as levoglu-cosan but decrease particle-phase partitioning for low O: C, monoterpene-derived species.


Journal of Heat Transfer-transactions of The Asme | 2015

Numerical Simulations of the Near-Field Region of Film Cooling Jets Under High Free Stream Turbulence: Application of RANS and Hybrid URANS/Large Eddy Simulation Models

Hosein Foroutan; Savas Yavuzkurt

This paper investigates the flow field and thermal characteristics in the near-field regionof film cooling jets through numerical simulations using Reynolds-averaged Navier–Stokes (RANS) and hybrid unsteady RANS (URANS)/large eddy simulation (LES) models.Detailed simulations of flow and thermal fields of a single-row of film cooling cylindricalholes with 30deg inline injection on a flat plate are obtained for low (M¼0.5) and high(M¼1.5) blowing ratios under high free stream turbulence (FST) (10%). The realizablek- emodel is used within the RANS framework and a realizable k- -based detached eddysimulation (DES) is used as a hybrid URANS/LES model. Both models are used togetherwith the two-layer zonal model for near-wall simulations. Steady and time-averagedunsteady film cooling effectiveness obtained using these models are compared with avail-able experimental data. It is shown that hybrid URANS/LES models (DES in the presentpaper) predict more mixing both in the wall-normal and spanwise directions compared toRANS models, while unsteady asymmetric vortical structures of the flow can also be cap-tured. The turbulent heat flux components predicted by the DES model are higher thanthose obtained by the RANS simulations, resulting in enhanced turbulent heat transferbetween the jet and mainstream, and consequently better predictions of the effectiveness.Nevertheless, there still exist some discrepancies between numerical results andexperimental data. Furthermore, the unsteady physics of jet and crossflow interactionsand the jet lift-off under high FST is studied using the present DES results.[DOI: 10.1115/1.4028646]Keywords: film cooling, unsteady simulation, turbulence modeling, high free streamturbulence, detached eddy simulation


Journal of Fluids Engineering-transactions of The Asme | 2015

Unsteady Numerical Simulation of Flow in Draft Tube of a Hydroturbine Operating Under Various Conditions Using a Partially Averaged Navier–Stokes Model

Hosein Foroutan; Savas Yavuzkurt

The variable energy demand requires a great flexibility in operating a hydroturbine, which forces the machine to be operated far from its design point. One of the main components of a hydroturbine where undesirable flow phenomena occur under off-design conditions is the draft tube. Using computational fluid dynamics (CFD), the present paper studies the flow in the draft tube of a Francis turbine operating under various conditions. Specifically, four operating points with the same head and different flow rates corresponding to 70%, 91%, 99%, and 110% of the flow rate at the best efficiency point (BEP) are considered. Unsteady numerical simulations are performed using a recently developed partially averaged Navier–Stokes (PANS) turbulence model, and the results are compared to the available experimental data, as well as the numerical results of the traditionally used Reynolds-Averaged Navier–Stokes (RANS) models. Several parameters including the pressure recovery coefficient, mean velocity, and time-averaged and fluctuating wall pressure are investigated. It is shown that RANS and PANS both can predict the flow behavior close to the BEP operating condition. However, RANS results deviate considerably from the experimental data as the operating condition moves away from the BEP. The pressure recovery factor predicted by the RANS model shows more than 13% and 58% overprediction when the flow rate decreases to 91% and 70% of the flow rate at BEP, respectively. Predictions can be improved significantly using the present unsteady PANS simulations. Specifically, the pressure recovery factor is predicted by less than 4% and 6% deviation for these two operating conditions. A similar conclusion is reached from the analysis of the mean velocity and wall pressure data. Using unsteady PANS simulations, several transient features of the draft tube flow including the vortex rope and associated pressure fluctuations are successfully modeled. The formation of the vortex rope in partial load conditions results in severe pressure fluctuations exerting oscillatory forces on the draft tube. These pressure fluctuations are studied for several locations in the draft tube and the critical region with highest fluctuation amplitude is found to be the inner side of the elbow.


Atmospheric Environment | 2018

Enhancements to AERMOD's building downwash algorithms based on wind-tunnel and Embedded-LES modeling

E.M. Monbureau; David K. Heist; Steven G. Perry; L.H. Brouwer; Hosein Foroutan; W. Tang

Knowing the fate of effluent from an industrial stack is important for assessing its impact on human health. AERMOD is one of several Gaussian plume models containing algorithms to evaluate the effect of buildings on the movement of the effluent from a stack. The goal of this study is to improve AERMODs ability to accurately model important and complex building downwash scenarios by incorporating knowledge gained from a recently completed series of wind tunnel studies and complementary large eddy simulations of flow and dispersion around simple structures for a variety of building dimensions, stack locations, stack heights, and wind angles. This study presents three modifications to the building downwash algorithm in AERMOD that improve the physical basis and internal consistency of the model, and one modification to AERMODs building pre-processor to better represent elongated buildings in oblique winds. These modifications are demonstrated to improve the ability of AERMOD to model observed ground-level concentrations in the vicinity of a building for the variety of conditions examined in the wind tunnel and numerical studies.


Journal of Hydrodynamics | 2016

An axisymmetric model for draft tube flow at partial load

Hosein Foroutan; Savas Yavuzkurt

A new Reynolds-averaged Navier-Stokes (RANS) turbulence model is developed in order to correctly predict the mean flow field in a draft tube operating under partial load using 2-D axisymmetric simulations. It is shown that although 2-D axisymme- tric simulations cannot model the 3-D unsteady features of the vortex rope, they can give the average location of the vortex rope in the draft tube. Nevertheless, RANS simulations underpredict the turbulent kinetic energy (TKE) production and diffusion near the center of the draft tube where the vortex rope forms, resulting in incorrect calculation of TKE profiles and, hence, poor prediction of the axial velocity. Based on this observation, a new k-ε turbulence RANS model taking into account the extra production and diffusion of TKE due to coherent structures associated with the vortex rope formation is developed. The new model can successfully predict the mean flow velocity with significant improvements in comparison with the realizable k-ε model. This is attributed to better prediction of TKE production and diffusion by the new model in the draft tube under partial load. Specifically, the new model calculates 31% more production and 46% more diffusion right at the shear layer when compared to the k-ε model.


ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Volume 1, Symposia – Parts A, B, C, and D | 2011

Simulation of Flow Through Conical Diffusers With and Without Inlet Swirl Using CFD

Sushant Dhiman; Hosein Foroutan; Savas Yavuzkurt

One of the major problems encountered in the operation of hydraulic turbines (such as Francis turbines) is a rotating vortex rope which forms in the draft tube under part load conditions. Overall goal of the present research is to study the formation of this oscillating vortex rope using CFD and understand the fundamental mechanisms governing this flow phenomenon. A systematic step by step CFD approach is chosen starting from the simplest to the most complicated flow. The current CFD study reported here therefore aims at studying flows in conical diffusers with and without swirl as a simplified draft tube flow. Two test cases are considered, one is flow with inlet swirl and the other without swirl in a conical diffuser. CFD simulations were carried out using five different turbulence models, namely standard, realizable and RNG k-e (along with the enhanced wall treatment for near-wall region), SST k-ω and the Reynolds stress model (RSM). Wall pressure coefficient along the diffuser, streamwise and circumferential mean velocity, turbulent kinetic energy (TKE) and Reynolds stress profiles are compared with the experimental data as well as CFD results from literature. It is shown that the moderate levels of swirl cause improvement in the pressure recovery in the diffuser as much as 15%. Also, the standard k-e and RSM models perform best in predicting turbulent swirling flow behavior. Profiles of the streamwise velocity obtained from these models are in relatively good agreement with the experimental data (with maximum deviation of 25%), while the predictions of the SST k-ω show as much as 60% difference. Also, there is only 8% difference between the level of Reynolds stress obtained from the standard k-e model and those from the experimental data. Overall, however, all turbulence models need to be improved in order to fully capture the details of the swirling flow in a diffuser and certainly the flow in a draft tube of a hydroturbine where vortex rope breakdown and/or boundary layer separation occurs.Copyright


Atmospheric Environment | 2018

Numerical analysis of pollutant dispersion around elongated buildings: An embedded large eddy simulation approach

Hosein Foroutan; W. Tang; David K. Heist; Steven G. Perry; L.H. Brouwer; E.M. Monbureau

High fidelity, scale-resolving numerical simulations of flow and pollutant dispersion around several elongated isolated buildings are presented in this paper. The embedded large eddy simulation (ELES) is used to model flow and concentration fields for six test cases with various source-building geometries. Specifically, the influence of building aspect ratio, wind direction, and source location is examined with these cases. Results obtained from the present ELES model are evaluated using available wind tunnel measurements, including those of streamwise and spanwise velocities, turbulent kinetic energy, and streamwise, lateral, and spanwise pollutant concentrations. Comparisons indicate that the ELES provides realistic representations of the flow and concentration fields observed in wind tunnel experiments, and captures several complex phenomena including the lateral shift and enhanced descent of the plume for rotated/elongated buildings. Furthermore, the ELES provides a means to study the advective and turbulent concentration fluxes, plume shapes, and geometry of vortical structures that is used to examine turbulent transport of pollutants around buildings. We investigate the enhancement of vertical and lateral plume spread as the building aspect ratio is increased. In addition, through the study of advective and turbulent concentration fluxes, we shed light on the physics behind higher ground-level concentrations observed for rotated buildings.

Collaboration


Dive into the Hosein Foroutan's collaboration.

Top Co-Authors

Avatar

Savas Yavuzkurt

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Jonathan E. Pleim

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Jeffrey Young

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sergey L. Napelenok

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Havala O. T. Pye

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

K. Wyat Appel

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Rohit Mathur

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Amirfarhang Mehdizadeh

University of Missouri–Kansas City

View shared research outputs
Top Co-Authors

Avatar

Brett Gantt

United States Environmental Protection Agency

View shared research outputs
Researchain Logo
Decentralizing Knowledge