Hyo-Jun Lee
Seoul National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hyo-Jun Lee.
Plant Journal | 2012
Sangmin Lee; Pil Joon Seo; Hyo-Jun Lee; Chung-Mo Park
Reactive oxygen species (ROS) are produced in plant cells primarily as by-products of aerobic energy metabolism. They are also generated during plant adaptation responses to environmental stresses, such as drought and high salinity. Therefore, plants have evolved ROS-detoxifying enzymes and antioxidants to cope with ROS accumulation. However, if stress conditions are prolonged, the level of ROS will surpass the capacity of the detoxifying machinery, causing oxidative damage to cellular constituents. It is known that ROS act in abscisic acid-mediated stress responses to sustain plant survival under adverse growth conditions. However, it is largely unknown how ROS metabolism is linked to stress responses. Here, we show that a drought-responsive NAC transcription factor NTL4 promotes ROS production by binding directly to the promoters of genes encoding ROS biosynthetic enzymes during drought-induced leaf senescence. Leaf senescence was accelerated in 35S:4ΔC transgenic plants over-expressing an active form of NTL4 under drought conditions. The 35S:4ΔC transgenic plants were hypersensitive to drought, and ROS accumulated in the leaves. In contrast, ROS levels were reduced in NTL4-deficient ntl4 mutants, which exhibited delayed leaf senescence and enhanced drought resistance. These observations indicate that NTL4 acts as a molecular switch that couples ROS metabolism to drought-induced leaf senescence in Arabidopsis.
The Plant Cell | 2015
Hyo-Jun Lee; Young-Joon Park; Pil Joon Seo; Ju-Heon Kim; Hee-Jung Sim; Sang-Gyu Kim; Chung-Mo Park
Phosphorylation of NPR by the protein kinase SnRK2.8 allows nuclear import of NPR1, an essential step in systemic acquired resistance. In plants, necrotic lesions occur at the site of pathogen infection through the hypersensitive response, which is followed by induction of systemic acquired resistance (SAR) in distal tissues. Salicylic acid (SA) induces SAR by activating NONEXPRESSER OF PATHOGENESIS-RELATED GENES1 (NPR1) through an oligomer-to-monomer reaction. However, SA biosynthesis is elevated only slightly in distal tissues during SAR, implying that SA-mediated induction of SAR requires additional factors. Here, we demonstrated that SA-independent systemic signals induce a gene encoding SNF1-RELATED PROTEIN KINASE 2.8 (SnRK2.8), which phosphorylates NPR1 during SAR. The SnRK2.8-mediated phosphorylation of NPR1 is necessary for its nuclear import. Notably, although SnRK2.8 transcription and SnRK2.8 activation are independent of SA signaling, the SnRK2.8-mediated induction of SAR requires SA. Together with the SA-mediated monomerization of NPR1, these observations indicate that SA signals and SnRK2.8-mediated phosphorylation coordinately function to activate NPR1 via a dual-step process in developing systemic immunity in Arabidopsis thaliana.
Nature Communications | 2014
Hyo-Jun Lee; Jaehoon Jung; Lucas Cortés Llorca; Sang-Gyu Kim; Sangmin Lee; Ian T. Baldwin; Chung-Mo Park
Global warming is predicted to profoundly affect plant distribution and crop yield in the near future. Higher ambient temperature can influence diverse aspects of plant growth and development. In Arabidopsis, the basic helix-loop-helix transcription factor Phytochrome-Interacting Factor 4 (PIF4) regulates temperature-induced adaptive responses by modulating auxin biosynthesis. At high temperature, PIF4 directly activates expression of YUCCA8 (YUC8), a gene encoding an auxin biosynthetic enzyme, resulting in auxin accumulation. Here we demonstrate that the RNA-binding protein FCA attenuates PIF4 activity by inducing its dissociation from the YUC8 promoter at high temperature. At 28 °C, auxin content is elevated in FCA-deficient mutants that exhibit elongated stems but reduced in FCA-overexpressing plants that exhibit reduced stem growth. We propose that the FCA-mediated regulation of YUC8 expression tunes down PIF4-induced architectural changes to achieve thermal adaptation of stem growth at high ambient temperature.
Trends in Plant Science | 2014
Jaehoon Jung; Hyo-Jun Lee; Mi-Jeong Park; Chung-Mo Park
The E3 ubiquitin ligase HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES 1 (HOS1) functions as a cold signaling attenuator by degrading the INDUCER OF CBF EXPRESSION 1 transcription factor, which is a key regulator of the cold-induced transcriptome and freezing tolerance in plants. Recent studies demonstrate that HOS1 also plays nonproteolytic roles in gene expression regulation. HOS1 acts as a chromatin remodeling factor that modulates FLOWERING LOCUS C chromatin in cold regulation of flowering time. It associates with the nuclear pore complex to facilitate nucleocytoplasmic mRNA export to maintain circadian periodicity over a range of light and temperature conditions. In this review, we summarize recent advances in molecular mechanisms underlying HOS1 function during plant development in response to fluctuating environmental conditions.
Trends in Plant Science | 2017
Hyo-Jun Lee; Young-Joon Park; Jun-Ho Ha; Ian T. Baldwin; Chung-Mo Park
Plants dynamically adjust their architecture to optimize growth and performance under fluctuating light environments, a process termed photomorphogenesis. A variety of photomorphogenic responses have been studied extensively in the shoots, where diverse photoreceptors and signaling molecules have been functionally characterized. Notably, accumulating evidence demonstrates that the underground roots also undergo photomorphogenesis, raising the question of how roots perceive and respond to aboveground light. Recent findings indicate that root photomorphogenesis is mediated by multiple signaling routes, including shoot-to-root transmission of mobile signaling molecules, direct sensing of light by the roots, and light channeling through the plant body. In this review we discuss recent advances in how light signals are transmitted to the roots to trigger photomorphogenic responses.
New Phytologist | 2017
Young-Joon Park; Hyo-Jun Lee; Jun-Ho Ha; Jae Young Kim; Chung-Mo Park
Plants adjust their architecture to optimize growth and reproductive success under changing climates. Hypocotyl elongation is a pivotal morphogenic trait that is profoundly influenced by light and temperature conditions. While hypocotyl photomorphogenesis has been well characterized at the molecular level, molecular mechanisms underlying hypocotyl thermomorphogenesis remains elusive. Here, we demonstrate that the E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) conveys warm temperature signals to hypocotyl thermomorphogenesis. To investigate the roles of COP1 and its target ELONGATED HYPOCOTYL 5 (HY5) during hypocotyl thermomorphogenesis, we employed Arabidopsis mutants that are defective in their genes. Transgenic plants overexpressing the genes were also produced. We examined hypocotyl growth and thermoresponsive turnover rate of HY5 protein at warm temperatures under both light and dark conditions. Elevated temperatures trigger the nuclear import of COP1, thereby alleviating the suppression of hypocotyl growth by HY5. While the thermal induction of hypocotyl growth is circadian-gated, the degradation of HY5 by COP1 is uncoupled from light responses and timing information. We propose that thermal activation of COP1 enables coincidence between warm temperature signaling and circadian rhythms, which allows plants to gate hypocotyl thermomorphogenesis at the most profitable time at warm temperatures.
New Phytologist | 2015
Sangmin Lee; Hyo-Jun Lee; Jaehoon Jung; Chung-Mo Park
Heat stress affects various aspects of plant growth and development by generating reactive oxygen species (ROS) which cause oxidative damage to cellular components. However, the mechanisms by which plants cope with ROS accumulation during their thermotolerance response remain largely unknown. Here, we demonstrate that the RNA-binding protein FCA, a key component of flowering pathways in Arabidopsis thaliana, is required for the acquisition of thermotolerance. Transgenic plants overexpressing the FCA gene (35S:FCA) were resistant to heat stress; the FCA-defective fca-9 mutant was sensitive to heat stress, consistent with induction of the FCA gene by heat. Furthermore, total antioxidant capacity was higher in the 35S:FCA transgenic plants but lower in the fca-9 mutant compared with wild-type controls. FCA interacts with the ABA-INSENSITIVE 5 (ABI5) transcription factor, which regulates the expression of genes encoding antioxidants, including 1-CYSTEINE PEROXIREDOXIN 1 (PER1). We found that FCA is needed for proper expression of the PER1 gene by ABI5. Our observations indicate that FCA plays a role in the induction of thermotolerance by triggering antioxidant accumulation under heat stress conditions, thus providing a novel role for FCA in heat stress responses in plants.
Communicative & Integrative Biology | 2016
Hyo-Jun Lee; Jun-Ho Ha; Chung-Mo Park
ABSTRACT Light is a critical environmental cue for plant growth and development. Plants actively monitor surrounding environments by sensing changes in light wavelength and intensity. Therefore, plants have evolved a series of photoreceptors to perceive a broad wavelength range of light. Phytochrome photoreceptors sense red and far-red light, which serves as a major photomorphogenic signal in shoot growth and morphogenesis. Notably, plants also express phytochromes in the roots, obscuring whether and how they perceive light in the soil. We have recently demonstrated that plants directly channel light to the roots through plant body to activate root phytochrome B (phyB). Stem light facilitates the nuclear import of phyB in the roots, and the photoactivated phyB triggers the accumulation of the photomorphogenic regulator ELONGATED HYPOCOTYL 5 in modulating root growth and gravitropism. Optical experiments revealed that red to far-red light is efficiently transduced through plant body. Our findings provide physical and molecular evidence, supporting that photoreceptors expressed in the underground roots directly sense light. We propose that the roots are not a passive organ but a central organ that actively monitors changes in the aboveground environment by perceiving light information from the shoots.
The Plant Cell | 2017
Kyung-Eun Gil; Woe-Yeon Kim; Hyo-Jun Lee; Mohammad Faisal; Quaiser Saquib; Abdulrahman A. Alatar; Chung-Mo Park
The E3 ligase ZEITLUPE mediates the clearance of denatured protein aggregates under heat stress conditions, thereby enhancing thermotolerance and the thermal stability of the circadian clock. Cellular proteins undergo denaturation and oxidative damage under heat stress, forming insoluble aggregates that are toxic to cells. Plants possess versatile mechanisms to deal with insoluble protein aggregates. Denatured proteins are either renatured to their native conformations or removed from cellular compartments; these processes are often referred to as protein quality control. Heat shock proteins (HSPs) act as molecular chaperones that assist in the renaturation-degradation process. However, how protein aggregates are cleared from cells in plants is largely unknown. Here, we demonstrate that heat-induced protein aggregates are removed by a protein quality control system that includes the ZEITLUPE (ZTL) E3 ubiquitin ligase, a central circadian clock component in Arabidopsis thaliana. ZTL mediates the polyubiquitination of aggregated proteins, which leads to proteasomal degradation and enhances the thermotolerance of plants growing at high temperatures. The ZTL-defective ztl-105 mutant exhibited reduced thermotolerance, which was accompanied by a decline in polyubiquitination but an increase in protein aggregate formation. ZTL and its interacting partner HSP90 were cofractionated with insoluble aggregates under heat stress, indicating that ZTL contributes to the thermoresponsive protein quality control machinery. Notably, the circadian clock was hypersensitive to heat in ztl-105. We propose that ZTL-mediated protein quality control contributes to the thermal stability of the circadian clock.
Plant Journal | 2017
Kyung-Eun Gil; Mi-Jeong Park; Hyo-Jun Lee; Young-Joon Park; Shin-Hee Han; Young-Ju Kwon; Pil Joon Seo; Jaehoon Jung; Chung-Mo Park
The circadian clock control of CONSTANS (CO) transcription and the light-mediated stabilization of its encoded protein coordinately adjust photoperiodic flowering by triggering rhythmic expression of the floral integrator flowering locus T (FT). Diurnal accumulation of CO is modulated sequentially by distinct E3 ubiquitin ligases, allowing peak CO to occur in the late afternoon under long days. Here we show that CO abundance is not simply targeted by E3 enzymes but is also actively self-adjusted through dynamic interactions between two CO isoforms. Alternative splicing of CO produces two protein variants, the full-size COα and the truncated COβ lacking DNA-binding affinity. Notably, COβ, which is resistant to E3 enzymes, induces the interaction of COα with CO-destabilizing E3 enzymes but inhibits the association of COα with CO-stabilizing E3 ligase. These observations demonstrate that CO plays an active role in sustaining its diurnal accumulation dynamics during Arabidopsis photoperiodic flowering.