Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hyunsoon Kang is active.

Publication


Featured researches published by Hyunsoon Kang.


Journal of Biological Chemistry | 2006

The Novel Nucleoside Analog R1479 (4′-Azidocytidine) Is a Potent Inhibitor of NS5B-dependent RNA Synthesis and Hepatitis C Virus Replication in Cell Culture

Klaus Klumpp; Vincent Leveque; Sophie Le Pogam; Han Ma; Wen-Rong Jiang; Hyunsoon Kang; Caroline Granycome; Margaret Singer; Carl Laxton; Julie Qi Hang; Keshab Sarma; David Bernard Smith; Dieter Heindl; Christopher John Hobbs; John Herbert Merrett; Julian A. Symons; Nick Cammack; Joseph Armstrong Martin; René Devos; Isabel Najera

Hepatitis C virus (HCV) polymerase activity is essential for HCV replication. Targeted screening of nucleoside analogs identified R1479 (4′-azidocytidine) as a specific inhibitor of HCV replication in the HCV subgenomic replicon system (IC50 = 1.28 μm) with similar potency compared with 2′-C-methylcytidine (IC50 = 1.13 μm). R1479 showed no effect on cell viability or proliferation of HCV replicon or Huh-7 cells at concentrations up to 2 mm. HCV replicon RNA could be fully cleared from replicon cells after prolonged incubation with R1479. The corresponding 5′-triphosphate derivative (R1479-TP) is a potent inhibitor of native HCV replicase isolated from replicon cells and of recombinant HCV polymerase (NS5B)-mediated RNA synthesis activity. R1479-TP inhibited RNA synthesis as a CTP-competitive inhibitor with a Ki of 40 nm. On an HCV RNA-derived template substrate (complementary internal ribosome entry site), R1479-TP showed similar potency of NS5B inhibition compared with 3′-dCTP. R1479-TP was incorporated into nascent RNA by HCV polymerase and reduced further elongation with similar efficiency compared with 3′-dCTP under the reaction conditions. The S282T point mutation in the coding sequence of NS5B confers resistance to inhibition by 2′-C-MeATP and other 2′-methyl-nucleotides. In contrast, the S282T mutation did not confer cross-resistance to R1479.


Antimicrobial Agents and Chemotherapy | 2008

The Hepatitis C Virus Replicon Presents a Higher Barrier to Resistance to Nucleoside Analogs than to Nonnucleoside Polymerase or Protease Inhibitors

Matthew F. McCown; Sonal Rajyaguru; Sophie Le Pogam; Samir Ali; Wen-Rong Jiang; Hyunsoon Kang; Julian A. Symons; Nick Cammack; Isabel Najera

ABSTRACT Specific inhibitors of hepatitis C virus (HCV) replication that target the NS3/4A protease (e.g., VX-950) or the NS5B polymerase (e.g., R1479/R1626, PSI-6130/R7128, NM107/NM283, and HCV-796) have advanced into clinical development. Treatment of patients with VX-950 or HCV-796 rapidly selected for drug-resistant variants after a 14-day monotherapy treatment period. However, no viral resistance was identified after monotherapy with R1626 (prodrug of R1479) or NM283 (prodrug of NM107) after 14 days of monotherapy. Based upon the rapid selection of resistance to the protease and nonnucleoside inhibitors during clinical trials and the lack of selection of resistance to the nucleoside inhibitors, we used the replicon system to determine whether nucleoside inhibitors demonstrate a higher genetic barrier to resistance than protease and nonnucleoside inhibitors. Treatment of replicon cells with nucleoside inhibitors at 10 and 15 times the 50% effective concentration resulted in clearance of the replicon, while treatment with a nonnucleoside or protease inhibitor selected resistant colonies. In combination, the presence of a nucleoside inhibitor reduced the frequency of colonies resistant to the other classes of inhibitors. These results indicate that the HCV replicon presents a higher barrier to the selection of resistance to nucleoside inhibitors than to nonnucleoside or protease inhibitors. Furthermore, the combination of a nonnucleoside or protease inhibitor with a nucleoside polymerase inhibitor could have a clear clinical benefit through the delay of resistance emergence.


Journal of Virology | 2006

Selection and Characterization of Replicon Variants Dually Resistant to Thumb- and Palm-Binding Nonnucleoside Polymerase Inhibitors of the Hepatitis C Virus

Sophie Le Pogam; Hyunsoon Kang; Seth F. Harris; Vincent Leveque; Anthony M. Giannetti; Samir Ali; Wen-Rong Jiang; Sonal Rajyaguru; Gisele Tavares; Connie Oshiro; Than Hendricks; Klaus Klumpp; Julian A. Symons; Michelle F. Browner; Nick Cammack; Isabel Najera

ABSTRACT Multiple nonnucleoside inhibitor binding sites have been identified within the hepatitis C virus (HCV) polymerase, including in the palm and thumb domains. After a single treatment with a thumb site inhibitor (thiophene-2-carboxylic acid NNI-1), resistant HCV replicon variants emerged that contained mutations at residues Leu419, Met423, and Ile482 in the polymerase thumb domain. Binding studies using wild-type (WT) and mutant enzymes and structure-based modeling showed that the mechanism of resistance is through the reduced binding of the inhibitor to the mutant enzymes. Combined treatment with a thumb- and a palm-binding polymerase inhibitor had a dramatic impact on the number of replicon colonies able to replicate in the presence of both inhibitors. A more exact characterization through molecular cloning showed that 97.7% of replicons contained amino acid substitutions that conferred resistance to either of the inhibitors. Of those, 65% contained simultaneously multiple amino acid substitutions that conferred resistance to both inhibitors. Double-mutant replicons Met414Leu and Met423Thr were predominantly selected, which showed reduced replication capacity compared to the WT replicon. These findings demonstrate the selection of replicon variants dually resistant to two NS5B polymerase inhibitors binding to different sites of the enzyme. Additionally, these findings provide initial insights into the in vitro mutational threshold of the HCV NS5B polymerase and the potential impact of viral fitness on the selection of multiple-resistant mutants.


Antimicrobial Agents and Chemotherapy | 2008

Selected Replicon Variants with Low-Level In Vitro Resistance to the Hepatitis C Virus NS5B Polymerase Inhibitor PSI-6130 Lack Cross-Resistance with R1479

Samir Ali; Vincent Leveque; Sophie Le Pogam; Han Ma; Friederike Philipp; Nicole Inocencio; Mark A. Smith; Andre Alker; Hyunsoon Kang; Isabel Najera; Klaus Klumpp; Julian A. Symons; Nick Cammack; Wen-Rong Jiang

ABSTRACT PSI-6130 (β-d-2′-deoxy-2′-fluoro-2′-C-methylcytidine) is a selective inhibitor of hepatitis C virus (HCV) replication that targets the NS5B polymerase. R7128, the prodrug of PSI-6130, has shown antiviral efficacy in patients chronically infected with HCV genotype 1a (GT-1a) and GT-1b. We observed that the compound exhibited potent in vitro activity against laboratory-optimized HCV replicons as well as against a panel of replicons containing NS5B HCV polymerases derived from GT-1a and GT-1b clinical isolates. We used the HCV replicon cell system to examine the emergence of variants with reduced sensitivity to PSI-6130. Short-term treatment of cells harboring the HCV subgenomic replicon with PSI-6130 cleared the replicon without generating resistant variants. Long-term culture of the cells under the compound selection generated the S282T substitution in a complex pattern with other amino acid substitutions in the NS5B polymerase. The presence of the coselected substitutions did not increase the moderate three- to sixfold loss of sensitivity to PSI-6130 mediated by the S282T substitution; however, their presence enhanced the replication capacity compared to the replication levels seen with the S282T substitution alone. We also observed a lack of cross-resistance between PSI-6130 and R1479 and demonstrated that long-term culture selection with PSI-6130 in replicon cells harboring preexisting mutations resistant to R1479 (S96T/N142T) results in the emergence of the S282T substitution and the reversion of S96T to wild-type serine. In conclusion, PSI-6130 presents a high barrier to resistance selection in vitro, selects for variants exhibiting only low-level resistance, and lacks cross-resistance with R1479, supporting the continued development of the prodrug R7128 as a therapeutic agent for the treatment of HCV infection.


The Journal of Infectious Diseases | 2010

RG7128 Alone or in Combination with Pegylated Interferon-α2a and Ribavirin Prevents Hepatitis C Virus (HCV) Replication and Selection of Resistant Variants in HCV-Infected Patients

Sophie Le Pogam; A. Seshaadri; Aren Ewing; Hyunsoon Kang; Alan Kosaka; Jun-Mei Yan; Michelle M. Berrey; Bill Symonds; Abel De La Rosa; Nick Cammack; Isabel Najera

INTRODUCTION RG7128 (prodrug of PSI-6130) shows potent antiviral efficacy in patients infected with hepatitis C virus (HCV) genotypes 1, 2, or 3, with mean viral load decreases of 2.7 and 5 log(10) IU/mL, respectively, associated with 1500-mg doses twice daily after monotherapy for 2 weeks and with 1000-mg and 1500-mg doses twice daily after treatment in combination with the standard of care (SOC) for 4 weeks. RESULTS From 32 patients treated with RG7128 monotherapy for 2 weeks, marginal viral load rebound was observed in 3 HCV genotype 1-infected patients, whereas partial response was observed in 2 genotype 1-infected patients. From 85 patients receiving RG7128 in combination with SOC, 1 HCV genotype 1-infected patient experienced a viral rebound, and 2 genotype 3-infected patients experienced a transient rebound. Five genotype 1-infected patients had an HCV load of >1000 IU/mL at the end of 4-week treatment. No viral resistance was observed, per NS5B sequencing and phenotypic studies. PSI-6130 resistance substitution S282T needs to be present at levels of ≥90% within a patients quasispecies to confer low-level resistance. No evidence of S282T was found by population or clonal sequence analyses. CONCLUSIONS The requirement for a predominant S282T mutant quasispecies, its low replication capacity, and the low-level resistance it confers probably contribute to the lack of RG7128 resistance observed in HCV-infected patients.


Journal of Antimicrobial Chemotherapy | 2008

Existence of hepatitis C virus NS5B variants naturally resistant to non-nucleoside, but not to nucleoside, polymerase inhibitors among untreated patients

Sophie Le Pogam; A. Seshaadri; Alan Kosaka; Sophie Chiu; Hyunsoon Kang; Steven Hu; Sonal Rajyaguru; Julian Symons; Nick Cammack; Isabel Najera


Virology | 2006

In vitro selected Con1 subgenomic replicons resistant to 2'-C-Methyl-Cytidine or to R1479 show lack of cross resistance

Sophie Le Pogam; Wen-Rong Jiang; Vincent Leveque; Sonal Rajyaguru; Han Ma; Hyunsoon Kang; Sharon Jiang; Margaret Singer; Samir Ali; Klaus Klumpp; Dave Smith; Julian Symons; Nick Cammack; Isabel Najera


Antimicrobial Agents and Chemotherapy | 2012

Characterization of Hepatitis C Virus (HCV) Quasispecies Dynamics upon Short-Term Dual Therapy with the HCV NS5B Nucleoside Polymerase Inhibitor Mericitabine and the NS3/4 Protease Inhibitor Danoprevir

S. Le Pogam; Jun-Mei Yan; M. Chhabra; M. Ilnicka; Hyunsoon Kang; Alan Kosaka; Samir Ali; D. J. Chin; Nancy S. Shulman; Patrick F. Smith; Klaus Klumpp; Isabel Najera


Journal of Hepatology | 2008

21 LOW LEVEL OF RESISTANCE, LOW VIRAL FITNESS AND ABSENCE OF RESISTANCE MUTATIONS IN BASELINE QUASISPECIES MAY CONTRIBUTE TO HIGH BARRIER TO R1626 RESISTANCE IN VIVO

S. Le Pogam; A. Seshaadri; Hyunsoon Kang; Alan Kosaka; Steven Hu; Julian Symons; Klaus Klumpp; Nick Cammack; Isabel Najera


Journal of Hepatology | 2008

851 ANTIVIRAL POTENCY OF R1479, ACTIVE COMPOUND DERIVED IN VIVO FROM PRODRUG R1626, DEMONSTRATED ACROSS HCV GENOTYPES 1-6 IN NS5B RECOMBINANT ENZYMES AND HCV REPLICONS

Vincent Leveque; S. Le Pogam; Hyunsoon Kang; Gloria Ao-Ieong; Alan Kosaka; A. Seshaadri; Julian Symons; Nick Cammack; Klaus Klumpp; Isabel Najera

Collaboration


Dive into the Hyunsoon Kang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge