Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Igor Aleinov is active.

Publication


Featured researches published by Igor Aleinov.


Journal of Climate | 2006

Present-Day Atmospheric Simulations Using GISS ModelE: Comparison to In Situ, Satellite, and Reanalysis Data

Gavin A. Schmidt; Reto Ruedy; James E. Hansen; Igor Aleinov; N. Bell; Mike Bauer; Susanne Bauer; Brian Cairns; V. M. Canuto; Y. Cheng; Anthony D. Del Genio; Greg Faluvegi; Andrew D. Friend; Timothy M. Hall; Yongyun Hu; Max Kelley; Nancy Y. Kiang; D. Koch; A. Lacis; Jean Lerner; Ken K. Lo; Ron L. Miller; Larissa Nazarenko; Valdar Oinas; Jan Perlwitz; Judith Perlwitz; David Rind; Anastasia Romanou; Gary L. Russell; Makiko Sato

Abstract A full description of the ModelE version of the Goddard Institute for Space Studies (GISS) atmospheric general circulation model (GCM) and results are presented for present-day climate simulations (ca. 1979). This version is a complete rewrite of previous models incorporating numerous improvements in basic physics, the stratospheric circulation, and forcing fields. Notable changes include the following: the model top is now above the stratopause, the number of vertical layers has increased, a new cloud microphysical scheme is used, vegetation biophysics now incorporates a sensitivity to humidity, atmospheric turbulence is calculated over the whole column, and new land snow and lake schemes are introduced. The performance of the model using three configurations with different horizontal and vertical resolutions is compared to quality-controlled in situ data, remotely sensed and reanalysis products. Overall, significant improvements over previous models are seen, particularly in upper-atmosphere te...


Journal of Advances in Modeling Earth Systems | 2014

Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive

Gavin A. Schmidt; Max Kelley; Larissa Nazarenko; Reto Ruedy; Gary L. Russell; Igor Aleinov; Mike Bauer; Susanne E. Bauer; Maharaj K. Bhat; Rainer Bleck; V. M. Canuto; Thomas L. Clune; Rosalinda de Fainchtein; Anthony D. Del Genio; Nancy Y. Kiang; A. Lacis; Allegra N. LeGrande; Elaine Matthews; Ron L. Miller; Amidu Oloso; William M. Putman; David Rind; Drew T. Shindell; Rahman A. Syed; Jinlun Zhang

We present a description of the ModelE2 version of the Goddard Institute for Space Studies (GISS) General Circulation Model (GCM) and the configurations used in the simulations performed for the Coupled Model Intercomparison Project Phase 5 (CMIP5). We use six variations related to the treatment of the atmospheric composition, the calculation of aerosol indirect effects, and ocean model component. Specifically, we test the difference between atmospheric models that have noninteractive composition, where radiatively important aerosols and ozone are prescribed from precomputed decadal averages, and interactive versions where atmospheric chemistry and aerosols are calculated given decadally varying emissions. The impact of the first aerosol indirect effect on clouds is either specified using a simple tuning, or parameterized using a cloud microphysics scheme. We also use two dynamic ocean components: the Russell and HYbrid Coordinate Ocean Model (HYCOM) which differ significantly in their basic formulations and grid. Results are presented for the climatological means over the satellite era (1980–2004) taken from transient simulations starting from the preindustrial (1850) driven by estimates of appropriate forcings over the 20th Century. Differences in base climate and variability related to the choice of ocean model are large, indicating an important structural uncertainty. The impact of interactive atmospheric composition on the climatology is relatively small except in regions such as the lower stratosphere, where ozone plays an important role, and the tropics, where aerosol changes affect the hydrological cycle and cloud cover. While key improvements over previous versions of the model are evident, these are not uniform across all metrics.


Climate Dynamics | 2007

Climate simulations for 1880–2003 with GISS modelE

James E. Hansen; Makiko Sato; Reto Ruedy; Pushker A. Kharecha; Andrew A. Lacis; Ron L. Miller; Larissa Nazarenko; K. Lo; Gavin A. Schmidt; Gary L. Russell; Igor Aleinov; Susanne E. Bauer; E. Baum; Brian Cairns; V. M. Canuto; Mark A. Chandler; Y. Cheng; Armond Cohen; A. D. Del Genio; G. Faluvegi; Eric L. Fleming; Andrew D. Friend; Timothy M. Hall; Charles H. Jackman; Jeffrey Jonas; Maxwell Kelley; Nancy Y. Kiang; D. Koch; Gordon Labow; J. Lerner

We carry out climate simulations for 1880–2003 with GISS modelE driven by ten measured or estimated climate forcings. An ensemble of climate model runs is carried out for each forcing acting individually and for all forcing mechanisms acting together. We compare side-by-side simulated climate change for each forcing, all forcings, observations, unforced variability among model ensemble members, and, if available, observed variability. Discrepancies between observations and simulations with all forcings are due to model deficiencies, inaccurate or incomplete forcings, and imperfect observations. Although there are notable discrepancies between model and observations, the fidelity is sufficient to encourage use of the model for simulations of future climate change. By using a fixed well-documented model and accurately defining the 1880–2003 forcings, we aim to provide a benchmark against which the effect of improvements in the model, climate forcings, and observations can be tested. Principal model deficiencies include unrealistically weak tropical El Nino-like variability and a poor distribution of sea ice, with too much sea ice in the Northern Hemisphere and too little in the Southern Hemisphere. Greatest uncertainties in the forcings are the temporal and spatial variations of anthropogenic aerosols and their indirect effects on clouds.


Journal of Advances in Modeling Earth Systems | 2014

CMIP5 historical simulations (1850–2012) with GISS ModelE2

Ron L. Miller; Gavin A. Schmidt; Larissa Nazarenko; Nick Tausnev; Susanne E. Bauer; Anthony D. DelGenio; Max Kelley; Ken K. Lo; Reto Ruedy; Drew T. Shindell; Igor Aleinov; Mike Bauer; Rainer Bleck; V. M. Canuto; Yonghua Chen; Y. Cheng; Thomas L. Clune; Greg Faluvegi; James E. Hansen; Richard J. Healy; Nancy Y. Kiang; D. Koch; A. Lacis; Allegra N. LeGrande; Jean Lerner; Surabi Menon; Valdar Oinas; Carlos Pérez García-Pando; Jan Perlwitz; Michael J. Puma

Observations of climate change during the CMIP5 extended historical period (1850-2012) are compared to trends simulated by six versions of the NASA Goddard Institute for Space Studies ModelE2 Earth System Model. The six models are constructed from three versions of the ModelE2 atmospheric general circulation model, distinguished by their treatment of atmospheric composition and the aerosol indirect effect, combined with two ocean general circulation models, HYCOM and Russell. Forcings that perturb the model climate during the historical period are described. Five-member ensemble averages from each of the six versions of ModelE2 simulate trends of surface air temperature, atmospheric temperature, sea ice and ocean heat content that are in general agreement with observed trends, although simulated warming is slightly excessive within the past decade. Only simulations that include increasing concentrations of long-lived greenhouse gases match the warming observed during the twentieth century. Differences in twentieth-century warming among the six model versions can be attributed to differences in climate sensitivity, aerosol and ozone forcing, and heat uptake by the deep ocean. Coupled models with HYCOM export less heat to the deep ocean, associated with reduced surface warming in regions of deepwater formation, but greater warming elsewhere at high latitudes along with reduced sea ice. All ensembles show twentieth-century annular trends toward reduced surface pressure at southern high latitudes and a poleward shift of the midlatitude westerlies, consistent with observations.


Geophysical Research Letters | 2015

Was Venus the first habitable world of our solar system

M. J. Way; Anthony D. Del Genio; Nancy Y. Kiang; Linda E. Sohl; David H. Grinspoon; Igor Aleinov; Maxwell Kelley; Thomas L. Clune

Present-day Venus is an inhospitable place with surface temperatures approaching 750K and an atmosphere 90 times as thick as Earths. Billions of years ago the picture may have been very different. We have created a suite of 3-D climate simulations using topographic data from the Magellan mission, solar spectral irradiance estimates for 2.9 and 0.715 Gya, present-day Venus orbital parameters, an ocean volume consistent with current theory, and an atmospheric composition estimated for early Venus. Using these parameters we find that such a world could have had moderate temperatures if Venus had a rotation period slower than ~16 Earth days, despite an incident solar flux 46-70% higher than Earth receives. At its current rotation period, Venuss climate could have remained habitable until at least 715 million years ago. These results demonstrate the role rotation and topography play in understanding the climatic history of Venus-like exoplanets discovered in the present epoch.


Journal of Climate | 2011

New Gravity Wave Treatments for GISS Climate Models

Marvin A. Geller; Tiehan Zhou; Reto Ruedy; Igor Aleinov; Larissa Nazarenko; N. Tausnev; S. Sun; Maxwell Kelley; Y. Cheng

Previous versions of GISS climate models have either used formulations of Rayleigh drag to represent unresolved gravity wave interactions with the model-resolved flow or have included a rather complicated treatment of unresolved gravity waves that, while being climate interactive, involved the specification of a relatively large number of parameters that were not well constrained by observations and also was computationally very expensive. Here, the authors introduce a relatively simple and computationally efficient specification of unresolved orographic and nonorographic gravity waves and their interaction with the resolved flow. Comparisons of the GISS model winds and temperatures with no gravity wave parameterization; with only orographic gravity wave parameterization; and with both orographic and nonorographic gravity wave parameterizations are shown to illustrate how the zonal mean winds and temperatures converge toward observations. The authors also show that the specifications of orographic and nonorographic gravity waves must be different in the Northern and Southern Hemispheres. Then results are presented where the nonorographic gravity wave sources are specified to represent sources from convection in the intertropical convergencezoneandspontaneousemissionfromjetimbalances.Finally,astrategytoincludetheseeffectsin a climate-dependent manner is suggested.


Astrophysical Journal Supplement Series | 2017

Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) 1.0: A General Circulation Model for Simulating the Climates of Rocky Planets

M. J. Way; Igor Aleinov; David S. Amundsen; Mark A. Chandler; Thomas L. Clune; A. D. Del Genio; Y. Fujii; Maxwell Kelley; Nancy Y. Kiang; Linda E. Sohl; Kostas Tsigaridis

Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) is a three-dimensional General Circulation Model (GCM) developed at the NASA Goddard Institute for Space Studies for the modeling of atmospheres of solar system and exoplanetary terrestrial planets. Its parent model, known as ModelE2, is used to simulate modern Earth and near-term paleo-Earth climates. ROCKE-3D is an ongoing effort to expand the capabilities of ModelE2 to handle a broader range of atmospheric conditions, including higher and lower atmospheric pressures, more diverse chemistries and compositions, larger and smaller planet radii and gravity, different rotation rates (from slower to more rapid than modern Earths, including synchronous rotation), diverse ocean and land distributions and topographies, and potential basic biosphere functions. The first aim of ROCKE-3D is to model planetary atmospheres on terrestrial worlds within the solar system such as paleo-Earth, modern and paleo-Mars, paleo-Venus, and Saturns moon Titan. By validating the model for a broad range of temperatures, pressures, and atmospheric constituents, we can then further expand its capabilities to those exoplanetary rocky worlds that have been discovered in the past, as well as those to be discovered in the future. We also discuss the current and near-future capabilities of ROCKE-3D as a community model for studying planetary and exoplanetary atmospheres.


Journal of Geophysical Research | 2005

Efficacy of climate forcings

James E. Hansen; Makiko Sato; Reto Ruedy; Larissa Nazarenko; Andrew A. Lacis; Gavin A. Schmidt; Gary L. Russell; Igor Aleinov; Michael Bauer; Susanne E. Bauer; N. Bell; Brian Cairns; V. M. Canuto; Mark A. Chandler; Y. Cheng; A. D. Del Genio; G. Faluvegi; Eric L. Fleming; Andrew D. Friend; Timothy M. Hall; Charles H. Jackman; Maxwell Kelley; Nancy Y. Kiang; D. Koch; Judith Lean; J. Lerner; K. Lo; Surabi Menon; Ron L. Miller; Patrick Minnis


Atmospheric Chemistry and Physics | 2006

Dangerous human-made interference with climate: a GISS modelE study

James E. Hansen; Makiko Sato; Reto Ruedy; Pushker A. Kharecha; Andrew A. Lacis; Ron L. Miller; Larissa Nazarenko; K. Lo; Gavin A. Schmidt; Gary L. Russell; Igor Aleinov; Susanne E. Bauer; E. Baum; Brian Cairns; V. M. Canuto; Mark A. Chandler; Y. Cheng; Albert Cohen; A. D. Del Genio; G. Faluvegi; Eric L. Fleming; Andrew D. Friend; Timothy M. Hall; Charles H. Jackman; Jeffrey Jonas; Maxwell Kelley; Nancy Y. Kiang; D. Koch; Gordon Labow; J. Lerner


Climatic Change | 2009

Irrigated afforestation of the Sahara and Australian Outback to end global warming

Leonard Ornstein; Igor Aleinov; David Rind

Collaboration


Dive into the Igor Aleinov's collaboration.

Top Co-Authors

Avatar

Nancy Y. Kiang

Goddard Institute for Space Studies

View shared research outputs
Top Co-Authors

Avatar

Gavin A. Schmidt

Goddard Institute for Space Studies

View shared research outputs
Top Co-Authors

Avatar

Maxwell Kelley

Goddard Institute for Space Studies

View shared research outputs
Top Co-Authors

Avatar

Larissa Nazarenko

Goddard Institute for Space Studies

View shared research outputs
Top Co-Authors

Avatar

Reto Ruedy

Goddard Institute for Space Studies

View shared research outputs
Top Co-Authors

Avatar

Thomas L. Clune

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Y. Cheng

Goddard Institute for Space Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ron L. Miller

Goddard Institute for Space Studies

View shared research outputs
Researchain Logo
Decentralizing Knowledge