Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Reto Ruedy is active.

Publication


Featured researches published by Reto Ruedy.


Journal of Geophysical Research | 1997

Radiative forcing and climate response

James E. Hansen; Makiko Sato; Reto Ruedy

We examine the sensitivity of a climate model to a wide range of radiative forcings, including changes of solar irradiance, atmospheric CO2, O3, CFCs, clouds, aerosols, surface albedo, and a “ghost” forcing introduced at arbitrary heights, latitudes, longitudes, seasons, and times of day. We show that, in general, the climate response, specifically the global mean temperature change, is sensitive to the altitude, latitude, and nature of the forcing; that is, the response to a given forcing can vary by 50% or more depending upon characteristics of the forcing other than its magnitude measured in watts per square meter. The consistency of the response among different forcings is higher, within 20% or better, for most of the globally distributed forcings suspected of influencing global mean temperature in the past century, but exceptions occur for certain changes of ozone or absorbing aerosols, for which the climate response is less well behaved. In all cases the physical basis for the variations of the response can be understood. The principal mechanisms involve alterations of lapse rate and decrease (increase) of large-scale cloud cover in layers that are preferentially heated (cooled). Although the magnitude of these effects must be model-dependent, the existence and sense of the mechanisms appear to be reasonable. Overall, we reaffirm the value of the radiative forcing concept for predicting climate response and for comparative studies of different forcings; indeed, the present results can help improve the accuracy of such analyses and define error estimates. Our results also emphasize the need for measurements having the specificity and precision needed to define poorly known forcings such as absorbing aerosols and ozone change. Available data on aerosol single scatter albedo imply that anthropogenic aerosols cause less cooling than has commonly been assumed. However, negative forcing due to the net ozone change since 1979 appears to have counterbalanced 30–50% of the positive forcing due to the increase of well-mixed greenhouse gases in the same period. As the net ozone change includes halogen-driven ozone depletion with negative radiative forcing and a tropospheric ozone increase with positive radiative forcing, it is possible that the halogen-driven ozone depletion has counterbalanced more than half of the radiative forcing due to well-mixed greenhouse gases since 1979.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Global temperature change

James E. Hansen; Makiko Sato; Reto Ruedy; K. Lo; David W. Lea; Martin Medina-Elizade

Global surface temperature has increased ≈0.2°C per decade in the past 30 years, similar to the warming rate predicted in the 1980s in initial global climate model simulations with transient greenhouse gas changes. Warming is larger in the Western Equatorial Pacific than in the Eastern Equatorial Pacific over the past century, and we suggest that the increased West–East temperature gradient may have increased the likelihood of strong El Niños, such as those of 1983 and 1998. Comparison of measured sea surface temperatures in the Western Pacific with paleoclimate data suggests that this critical ocean region, and probably the planet as a whole, is approximately as warm now as at the Holocene maximum and within ≈1°C of the maximum temperature of the past million years. We conclude that global warming of more than ≈1°C, relative to 2000, will constitute “dangerous” climate change as judged from likely effects on sea level and extermination of species.


Monthly Weather Review | 1983

Efficient Three-Dimensional Global Models for Climate Studies: Models I and II

James E. Hansen; Gary L. Russell; David Rind; Peter H. Stone; A. Lacis; S. Lebedeff; Reto Ruedy; Larry D. Travis

Abstract A global atmospheric model is developed with a computational efficiency which allows long-range climate experiments. The model solves the simultaneous equations for conservation of mass, energy and momentum, and the equation of state on a grid. Differencing schemes for the dynamics are based on work of Arakawa; the schemes do not need any viscosity for numerical stability, and can thus yield good results with coarse resolution. Radiation is computed with a semi-implicit spectral integration, including all significant atmospheric gases, aerosols and cloud particles. Cloud cover and vertical distribution are computed. Convection mixes moisture, heat and momentum, with buoyant air allowed to penetrate to a height determined by its buoyancy. Ground temperature calculations include diurnal variation and seasonal heat storage. Ground hydrology incorporates a water-holding capacity appropriate for the root zone of local vegetation. Snow depth is computed. Snow albedo includes effects of snow age and mas...


Journal of Climate | 2006

Present-Day Atmospheric Simulations Using GISS ModelE: Comparison to In Situ, Satellite, and Reanalysis Data

Gavin A. Schmidt; Reto Ruedy; James E. Hansen; Igor Aleinov; N. Bell; Mike Bauer; Susanne Bauer; Brian Cairns; V. M. Canuto; Y. Cheng; Anthony D. Del Genio; Greg Faluvegi; Andrew D. Friend; Timothy M. Hall; Yongyun Hu; Max Kelley; Nancy Y. Kiang; D. Koch; A. Lacis; Jean Lerner; Ken K. Lo; Ron L. Miller; Larissa Nazarenko; Valdar Oinas; Jan Perlwitz; Judith Perlwitz; David Rind; Anastasia Romanou; Gary L. Russell; Makiko Sato

Abstract A full description of the ModelE version of the Goddard Institute for Space Studies (GISS) atmospheric general circulation model (GCM) and results are presented for present-day climate simulations (ca. 1979). This version is a complete rewrite of previous models incorporating numerous improvements in basic physics, the stratospheric circulation, and forcing fields. Notable changes include the following: the model top is now above the stratopause, the number of vertical layers has increased, a new cloud microphysical scheme is used, vegetation biophysics now incorporates a sensitivity to humidity, atmospheric turbulence is calculated over the whole column, and new land snow and lake schemes are introduced. The performance of the model using three configurations with different horizontal and vertical resolutions is compared to quality-controlled in situ data, remotely sensed and reanalysis products. Overall, significant improvements over previous models are seen, particularly in upper-atmosphere te...


Journal of Geophysical Research | 1999

GISS analysis of surface temperature change

James E. Hansen; Reto Ruedy; J. Glascoe; Makiko Sato

We describe the current GISS analysis of surface temperature change for the period 1880-1999 based primarily on meteorological station measurements. The global surface temperature in 1998 was the warmest in the period of instrumental data. The rate of temperature change was higher in the past 25 years than at any previous time in the period of instrumental data. The warmth of 1998 was too large and pervasive to be fully accounted for by the recent El Nino. Despite cooling in the first half of 1999, we suggest that the mean global temperature, averaged over 2-3 years, has moved to a higher level, analogous to the increase that occurred in the late 1970s. Warming in the United States over the past 50 years has been smaller than in most of the world, and over that period there was a slight cooling trend in the eastern United States and the neighboring Atlantic Ocean. The spatial and temporal patterns of the temperature change suggest that more than one mechanism was involved in this regional cooling. The cooling trend in the United States, which began after the 1930s and is associated with ocean temperature change patterns, began to reverse after 1979. We suggest that further warming in the United States to a level rivaling the 1930s is likely in the next decade, but reliable prediction requires better understanding of decadal oscillations of ocean temperature.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Perception of climate change

James E. Hansen; Makiko Sato; Reto Ruedy

“Climate dice,” describing the chance of unusually warm or cool seasons, have become more and more “loaded” in the past 30 y, coincident with rapid global warming. The distribution of seasonal mean temperature anomalies has shifted toward higher temperatures and the range of anomalies has increased. An important change is the emergence of a category of summertime extremely hot outliers, more than three standard deviations (3σ) warmer than the climatology of the 1951–1980 base period. This hot extreme, which covered much less than 1% of Earth’s surface during the base period, now typically covers about 10% of the land area. It follows that we can state, with a high degree of confidence, that extreme anomalies such as those in Texas and Oklahoma in 2011 and Moscow in 2010 were a consequence of global warming because their likelihood in the absence of global warming was exceedingly small. We discuss practical implications of this substantial, growing, climate change.


Journal of Geophysical Research | 2001

A closer look at United States and global surface temperature change

James E. Hansen; Reto Ruedy; Makiko Sato; M. Imhoff; W. Lawrence; David R. Easterling; Thomas C. Peterson; Thomas R. Karl

We compare the United States and global surface air temperature changes of the past century using the current Goddard Institute for Space Studies (GISS) analysis and the U.S. Historical Climatology Network (USHCN) record [Karl et al., 1990]. Changes in the GISS analysis subsequent to the documentation by Hansen et al. [1999] are as follows: (1) incorporation of corrections for time-of-observation bias and station history adjustments in the United States based on Easterling et al. [1996a], (2) reclassification of rural, small-town, and urban stations in the United States, southern Canada, and northern Mexico based on satellite measurements of night light intensity [Imhoff et al., 1997], and (3) a more flexible urban adjustment than that employed by Hansen et al. [1999], including reliance on only unlit stations in the United States and rural stations in the rest of the world for determining long-term trends. We find evidence of local human effects (“urban warming”) even in suburban and small-town surface air temperature records, but the effect is modest in magnitude and conceivably could be an artifact of inhomogeneities in the station records. We suggest further studies, including more complete satellite night light analyses, which may clarify the potential urban effect. There are inherent uncertainties in the long-term temperature change at least of the order of 0.1°C for both the U.S. mean and the global mean. Nevertheless, it is clear that the post-1930s cooling was much larger in the United States than in the global mean. The U.S. mean temperature has now reached a level comparable to that of the 1930s, while the global temperature is now far above the levels earlier in the century. The successive periods of global warming (1900–1940), cooling (1940–1965), and warming (1965–2000) in the 20th century show distinctive patterns of temperature change suggestive of roles for both climate forcings and dynamical variability. The U.S. was warm in 2000 but cooler than the warmest years in the 1930s and 1990s. Global temperature was moderately high in 2000 despite a lingering La Nina in the Pacific Ocean.


Geophysical Research Letters | 1992

Potential climate impact of Mount Pinatubo eruption

James E. Hansen; Andrew A. Lacis; Reto Ruedy; Makiko Sato

We use the GISS global climate model to make a preliminary estimate of Mount Pinatubos climate impact. Assuming the aerosol optical depth is nearly twice as great as for the 1982 El Chichon eruption, the model forecasts a dramatic but temporary break in recent global warming trends. The simulations indicate that Pinatubo occurred too late in the year to prevent 1991 from becoming one of the warmest years in instrumental records, but intense aerosol cooling is predicted to begin late in 1991 and to maximize late in 1992. The predicted cooling is sufficiently large that by mid 1992 it should even overwhelm global warming associated with an El Nino that appears to be developing, but the El Nino could shift the time of minimum global temperature into 1993. The model predicts a return to record warm levels in the later 1990s. We estimate the effect of the predicted global cooling on such practical matters as the severity of the coming Soviet winter and the dates of cherry blossoming next spring, and discuss caveats which must accompany these preliminary simulations.


Journal of Geophysical Research | 2002

Climate forcings in Goddard Institute for Space Studies SI2000 simulations

James E. Hansen; Makiko Sato; Larissa Nazarenko; Reto Ruedy; A. Lacis; D. Koch; Ina Tegen; Timothy M. Hall; Drew T. Shindell; B. D. Santer; Peter H. Stone; T. Novakov; Larry W. Thomason; R. H. J. Wang; Yuhang Wang; Daniel J. Jacob; S. M. Hollandsworth; L. Bishop; Jennifer A. Logan; Anne M. Thompson; Richard S. Stolarski; Judith Lean; R. Willson; Sydney Levitus; John I. Antonov; Nick Rayner; D. E. Parker; John R. Christy

[1] We define the radiative forcings used in climate simulations with the SI2000 version of the Goddard Institute for Space Studies (GISS) global climate model. These include temporal variations of well-mixed greenhouse gases, stratospheric aerosols, solar irradiance, ozone, stratospheric water vapor, and tropospheric aerosols. Our illustrations focus on the period 1951–2050, but we make the full data sets available for those forcings for which we have earlier data. We illustrate the global response to these forcings for the SI2000 model with specified sea surface temperature and with a simple Q-flux ocean, thus helping to characterize the efficacy of each forcing. The model yields good agreement with observed global temperature change and heat storage in the ocean. This agreement does not yield an improved assessment of climate sensitivity or a confirmation of the net climate forcing because of possible compensations with opposite changes of these quantities. Nevertheless, the results imply that observed global temperature change during the past 50 years is primarily a response to radiative forcings. It is also inferred that the planet is now out of radiation balance by 0.5 to 1 W/m 2 and that additional global warming of about 0.5� C is already ‘‘in the pipeline.’’ INDEX TERMS: 1620 Global Change: Climate dynamics (3309); 1635 Global Change: Oceans (4203); 1650 Global Change: Solar variability;


Journal of Advances in Modeling Earth Systems | 2014

Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive

Gavin A. Schmidt; Max Kelley; Larissa Nazarenko; Reto Ruedy; Gary L. Russell; Igor Aleinov; Mike Bauer; Susanne E. Bauer; Maharaj K. Bhat; Rainer Bleck; V. M. Canuto; Thomas L. Clune; Rosalinda de Fainchtein; Anthony D. Del Genio; Nancy Y. Kiang; A. Lacis; Allegra N. LeGrande; Elaine Matthews; Ron L. Miller; Amidu Oloso; William M. Putman; David Rind; Drew T. Shindell; Rahman A. Syed; Jinlun Zhang

We present a description of the ModelE2 version of the Goddard Institute for Space Studies (GISS) General Circulation Model (GCM) and the configurations used in the simulations performed for the Coupled Model Intercomparison Project Phase 5 (CMIP5). We use six variations related to the treatment of the atmospheric composition, the calculation of aerosol indirect effects, and ocean model component. Specifically, we test the difference between atmospheric models that have noninteractive composition, where radiatively important aerosols and ozone are prescribed from precomputed decadal averages, and interactive versions where atmospheric chemistry and aerosols are calculated given decadally varying emissions. The impact of the first aerosol indirect effect on clouds is either specified using a simple tuning, or parameterized using a cloud microphysics scheme. We also use two dynamic ocean components: the Russell and HYbrid Coordinate Ocean Model (HYCOM) which differ significantly in their basic formulations and grid. Results are presented for the climatological means over the satellite era (1980–2004) taken from transient simulations starting from the preindustrial (1850) driven by estimates of appropriate forcings over the 20th Century. Differences in base climate and variability related to the choice of ocean model are large, indicating an important structural uncertainty. The impact of interactive atmospheric composition on the climatology is relatively small except in regions such as the lower stratosphere, where ozone plays an important role, and the tropics, where aerosol changes affect the hydrological cycle and cloud cover. While key improvements over previous versions of the model are evident, these are not uniform across all metrics.

Collaboration


Dive into the Reto Ruedy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gavin A. Schmidt

Goddard Institute for Space Studies

View shared research outputs
Top Co-Authors

Avatar

Larissa Nazarenko

Goddard Institute for Space Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Lacis

Goddard Institute for Space Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary L. Russell

Goddard Institute for Space Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge